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This paper examines the implications of strategically scheduling flights on user-preferred 
routes in the Central East Pacific to reduce trajectory crossing points.  After first casting the 
flight scheduling problem in terms of a job shop scheduling problem, a 0-1 integer 
programming model is used to calculate the optimal departure and en route controls 
required to generate feasible flight schedules. To enhance the solution, a ration-by-schedule 
based heuristic is introduced to transform the original model into a subset of problems.  By 
varying attributes of the machines in the job shop scheduling formation, two distinct types of 
feasible schedules are obtained.  The first type of schedules are highly restrictive yet but free 
of all four-dimensional trajectory crossing points, while the second type are less restrictive 
but may require limited tactical flight separation maneuvers to alleviate residual crossing 
points.  The average adjusted time savings per flight varied between 1.8 minutes and 4.6 
minutes per flight when allowing for both strategic flight scheduling and user-preferred 
flight routing. 

 

I. Introduction 
he overarching viewpoint that is influencing how future air traffic services are provided under the Joint 
Planning and Development Organization’s (JPDO’s) Next Generation Air Transportation System (NGATS) is 

to “accommodate user preferences to the maximum extent possible.”1  Work contributing to this vision in the 
oceanic domain is underway at several research organizations.2,3,4  For example, recent efforts have focused on 
providing enhanced situational awareness to pilots to enable more frequent step-climbs and to increase awareness of 
surrounding traffic.3  Additionally, in Ref. 4 a backward recursion dynamic programming algorithm was utilized to 
calculate minimum-time wind-optimal routes, which served as surrogates for the actual user-preferred routes, in the 
Central East Pacific (CEP).  This study showed that significant benefits could be achieved by transiting flights off 
the fixed CEP-based route structure onto wind optimal routes particularly during the winter months when the polar 
jet stream commonly intersects the CEP routes.   
 The one major concern raised in this study related to the significant number of new simulated, four-dimensional 
(4-D) trajectory crossing points that were generated as a result of allowing user-preferred routing in this region of 
the ocean.  In this study, a 4-D trajectory crossing point is defined as a point in which two or more flights are 
predicted to co-exist at the same location in space (latitude, longitude, and altitude) and time.  An example of several 
potential 4-D trajectory crossing points is highlighted by the squares in Fig. 1b.  These additional crossing points 
may significantly increase the workload of the air traffic controllers that would be managing these new traffic 
streams, since these crossing points would require close monitoring to avoid the potential for loss-of-separation.  For 
reference, the simulated flight histories for all eastbound flights that utilized one of the seven CEP routes on Dec. 
14, 2005 are shown in Fig. 1a.  By contrast, the same set of flights on simulated wind optimal routes are shown in 
Fig. 1b.  The wind-optimal routes depicted in this figure were generated using the technique described in Ref. 4 in 
which flights traveled along their nominal routes in domestic airspace, and wind optimal routes only within oceanic 
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airspace.  Had the complete wind optimal routes between the origin and destination been depicted, considerably 
more 4-D trajectory crossing points would occur.  The most noticeable difference between the flight histories 
depicted in these two images results from the fact that the highly structured CEP routes ensures that flights on 
parallel tracks remain laterally separated, which is not the case when flights are allowed to fly along wind-optimal 
routes. 
 The purpose of this paper is to describe a general approach for scheduling flights in the aforementioned 4-D 
trajectory crossing point problem. This study is believed to be the first to examine the potential benefits of allowing 
flights to travel on user-preferred-routes in the CEP, while strategically scheduling these flights to ensure that the 
number of trajectory crossing points is manageable.  The issue of whether user-preferred trajectories are beneficial 
in the CEP is an open research area that is outside the scope of the current study.   
 At the core of this new technique, is a novel approach for transforming the flight scheduling problem into a job 
shop scheduling problem.5  Literature on the job shop dates back to the fifties and sixties7 and has received 
widespread use in the manufacturing and service industries,8 and more recently in the semiconductor industry9 for 
scheduling and planning operations.  The basic premise behind the job shop scheduling approach is the need to 
schedule a set of jobs, which could be flights or patients in a hospital, to a set of machines, which could be regions 
of airspace or hospital beds.  A more detailed discussion of the job shop scheduling formulation used in this study is 
reserved for Section II.A.  The resulting job shop scheduling problem is subsequently solved using a 0-1 integer 
programming model that was originally developed to solve a deterministic traffic flow management problem.6  By 
varying the attributes of the machines in the job shop scheduling problem, two distinct types of feasible schedules 
are generated.  The first type of schedules are highly restrictive but ensure that all 4-D trajectory crossing points are 
eliminated, while the second type are less restrictive yet may require a limited amount of tactical flight separation to 
eliminate all crossing points.  The issue of how the tactical flight separation would be accomplished in a futuristic 
air traffic control (ATC) system is an open research area that would likely require changes in ATC procedures and 
the development of new advanced ground-based and flight-deck based technologies, such as those described in the 
Distributed Air/Ground (DAG) Traffic Management (TM) operational concept.10   
 To test this new scheduling approach, the flights that were nominally scheduled to fly along one of the seven 
structured CEP based routes on Dec. 14-16 and 19-20 of 2005 (see Fig. 1a) were first rerouted using the minimum 
travel time, wind-optimal routing algorithm described in Ref. 4, and then scheduled using the approach described in 
this study.  The resulting flight schedules are examined in terms of the scheduling delays, the number of residual 
trajectory crossing points, and the adjusted time savings. 
 

 
 

Figure 1. Flight histories for [a] eastbound nominal Central East Pacific (CEP) routes and [b] eastbound 
oceanic wind-optimal CEP routes on Dec. 14, 2006. 
 
   Section II provides a high level overview of the job shop scheduling problem within the context of flight 
scheduling.  The 0-1 integer programming model that was adopted for this study, as well as a heuristic for 
decomposing this model into a number of computationally tractable sub-problems is also discussed in this section.  
Statistics related to the job shop formulation of the flight scheduling problem as well as the flight scheduling results 
are presented in Section III.  Section IV contains concluding remarks and recommendations for future research. 
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II. Modeling Method 
To strategically resolve the temporal trajectory crossing points, this study begins by recasting the CEP routing 

problem, which consists of flights, sectors, and schedule travel times, in terms of the job shop scheduling problem 
that consists of jobs, operations, schedules, and machines.  This mapping enables the utilization of integer 
programming and graph-based solution methodologies for calculating airborne and departure delays that resolve the 
4-D trajectory crossing points.  The remainder of this section is formatted as follows.  In Section II.A, the job shop 
scheduling formulation of the CEP routing problem is presented; the 0-1 integer programming model adopted is 
presented in Section II.B; and finally a heuristic for decomposing this model into computationally tractable sub-
problems is presented in Section II.C. 

A. Job-Shop Formulation 
The job shop problem consists of a set of N jobs 

! 

J i  i = 1,...,N{ }  and a set of m machines 

! 

M k  k = 1,...,m{ } .  
Each job can only be processed on one machine at any given instance of time, and each machine can only process 
one job at a given instance of time.  Jobs are further subdivided into a sequence of 

! 

P
i
 operations that are 

subsequently processed at one of the available machines.5  As an example, the set of operations associated with the 
ith job can be denoted as 

! 

Oij  i = 1,...,N and j = 1,...,Pi{ } .  Here the first subscript denotes the job number and the 
second subscript denotes the operation index.  This set of operations also contains precedence constraints, which 
require that operation 

! 

Oij be completed prior starting work on operation 

! 

Oij+1 for all 

! 

j = 1,...,Ni.  Furthermore, each 
operation requires processing time 

! 

lij  on a particular machine 

! 

Mij " M1,...,Mm{ } .  The objective of the job shop 
problem is therefore to find a feasible solution (i.e., one for which each operation 

! 

Oij is scheduled to a machine 

! 

Mij  
subject to the aforementioned constraints) that minimizes a particular cost function. 

 In terms of the oceanic flight scheduling problem, each flight can be thought of as a job, and each machine 
represents a region of oceanic airspace.  To facilitate this study, a uniform three-dimensional grid was overlaid on 
Oakland Oceanic Sectors 3 (OC3) and 4 (OC4), which are the primary oceanic sectors through which flights on the 
CEP routes travel (see Fig. 2).  For this initial study, no attempt was made to define an “optimal” grid that accounted 
for the prevailing easterly and westerly traffic flows in this region.  Follow-on studies that examine the benefits of 
creating sparse grids that are aligned with the traffic flows would be beneficial.  It is worth noting that this process 
of overlaying a grid on a region of airspace has been used in the past,11,12 but the current application to oceanic flight 
scheduling is believed to be unique.  A graphical representation of the resulting airspace is shown in Fig. 2.  
Depicted in this figure are the Hawaiian Islands in the lower left corner, the west coast of the United States on the 
right side, the OC3 and OC4 boundaries, a representative grid with corresponding cell (i.e., machine) labels, and two 
wind optimal routes.   

In this study, two different horizontal grid cell sizes were used to explore the scalability and dimensionality of 
the flight scheduling approach.  The first grid cell size was 30 nautical miles (nmi) by 30 nmi, which corresponds to 
the soon to be operationally implemented lateral and longitudinal separation standard for flights on the CEP routes.  
The number of operations that were allowed to be scheduled to each of the machines corresponding to one of these 
cells was assumed to be one, which ensured that no two flights occupied the same machine, or 30 nmi x 30 nmi 
region of airspace at any time.  The second grid cell size was 100 nmi by 100 nmi, which has two primary benefits.  
Firstly, the larger grid cell size reduces the effective number of machines that each flight must utilize, which 
significantly reduces the computational complexity of the scheduling problem as will be shown in Section 3.  
Secondly, the capacity of each of these larger machines (i.e., regions of airspace) was also assumed to be greater 
than 1, which allowed more than one flight to occupy the machine at any instant.  The main reason for allowing this 
is because these schedules will be less restrictive than the schedules generated with the smaller grid cells that only 
accommodate a single flight at any instance of time.  The vertical dimension of each cell was set to 1,000 ft, which 
corresponds to the vertical separation of flights along the CEP routes. 

Continuing with the job shop analogy, each grid cell depicted in Fig. 2 will become a machine in the problem 
formulation, and each flight path will be decomposed into a series of operations by transforming the continuous 
flight plan into a set of discreet events.  As an example, job 1, J1, which is composed of operations 

! 

O1q 1" q " 10{ }  
utilizes the following subset of machines:

! 

M 48,M 47,M 38,M 37,M 36,M 28,M 27,M19,M18,M 9{ } , where O11 is 
processed on M48, O12 is processed on M47, etc.  For clarity, the first two operations associated with job one, J1, 
which are labeled O11 and O12, are explicitly in Fig. 2.  Similarly, job two, J2, which is represented by the lowermost 
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flight path in this figure is composed of operations 

! 

O
2q 1" q " 8{ }  and these eight operations are processed on the 

following subset of machines: 

! 

M32,M31,M30,M29,M20,M19,M18,M9{ } .  The processing time, 

! 

lij , associated with operation 

! 

Oij will therefore 
be the time required for a given flight to traverse grid cell 

! 

Cij. 
 

 
 

Figure 2. Central East Pacific with representative oceanic grid. 
 
 After casting the flight scheduling problem in terms of the job shop problem, the objective is to find a feasible 
solution that temporally spaces flights to eliminate 4-D trajectory crossing points subject to a specified cost function.  
The light, bluish-grey cells in Fig. 2 illustrate three potential trajectory crossing points.  Assuming that both jobs J1 
and J2 require access to machine M19 at time 

! 

" t , a Gantt chart can be used to depict a subset of both a nominal 
schedule (see Fig. 3a) and a potentially feasible schedule (see Fig. 3b).  If the processing time of the eight operations 
associated with J1 (i.e., O18) is l18 and the processing time of the fifth operation associated with J2 (i.e., O25) is l25, 
then a potentially feasible schedule can be obtained by increasing the processing time of O25 to 

! 

" l 
25

= l
25

+ l
18

.  From 
a flight scheduling perspective, this would require the flight corresponding to 

! 

J
2
 to absorb 

! 

"t = l
18

 units of time 
prior to reaching machine 

! 

M
19

.  This could be done through a combination of pre-departure delays, speed controls, 
or path stretching.  Sections II.B describe the algorithmic approaches that were adopted in this study for calculating 
feasible flight schedules. 
 

 
Figure 3. Illustrative [a] unscheduled and [b] scheduled Gantt charts for four jobs and five machines. 

B. 0-1 Integer Programming Model 
 To schedule the CEP flights, the 0-1 integer programming model that was originally described in Ref. 6 was 
adopted, and is summarized here for completeness.  It is worth noting that this is a general model that has been 
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developed for assigning optimal delays to flights in order to satisfy airspace capacity constraints, such as airport 
arrival rate or sector capacity constraints.  This model relies upon a binary decision variable 

! 

w ft
j
" {0,1}  that is 

defined as follows: 
 

        

! 

wft
j

=
1,  if flight f arrives at sector j by time t

0,  otherwise

" 
# 
$ 

 

 
With this definition of 

! 

wft
j , the objective of this model is to minimize the total delay cost with respect to the 

unconstrained schedule that is expressed as follows: 
 
     

! 

min (cf
g[

f"F

# $ cf
a ) t(wft

k $wf,t$1
k )

{t"Tf
k |k=P(f,1)

# + cf
a t(wft

k $wf,t$1
k ) ]

{t"Tf
k |k=P(f,Nf )}

#                                             (1) 

 
The first summation in this expression is over all flights (i.e., jobs in the job shop scheduling parlance), the second 
summation is over all times that a given flight could occupy the departure airport, while the third summation is over 
all times that a flight can land at the destination airport.  The expression 

! 

(wft
j
"wf,t"1

j )  is defined to be one if flight f 
arrives at sector j at time t, and is zero otherwise.  As is commonly done, airborne delay costs, 

! 

c f
a , were assumed to 

be twice as large as departure delay costs, 

! 

c f
g .  

! 

N f  is the number of sectors in the path of flight f; 

! 

P( f ,i)  represents 

the flight path of flight f where 

! 

P( f ,1)  is the origin and 

! 

P( f ,N f )  is the destination; F is the set of all flight; and 

! 

T f
k  

is the set of feasible times that flight f can occupy airport k.  This expression is minimized with respect to the 
following set of constraints: 
 
Sector Capacity: Ensures that demand in sector j at time t does not exceed the sector’s time-varying capacity, 
 
        

! 

(wft
j "wft

# j ) $ Sj(t),  %j& J,  t & T

{(f, # j )|P(f,i)= j,P(f,i+1)= # j ,i<Nf }

'                                                              (2) 

 
Within the job shop scheduling context, each machine corresponds to a sector within this model; J corresponds to 
the set of all machines; and T is the set of all time periods considered in the scheduling problem.  For our study, 
machine capacities, 

! 

S j (t) , were varied between one and three.  A machine capacity of one ensured that only one 
operation (i.e., flight) could occupy any given machine at a instance of time, which prevented 4-D trajectory 
crossing points from occurring.  Machine capacities of two and three were also permitted in this study for the 
machines represented by the 100 nmi x 100 nmi region of airspace.  These increased machine capacities result in 
fewer binding constraints in the optimization problem, but can also lead to situations in which multiple flights utilize 
a common machine at the same time, which can lead to a limited number of unresolved 4-D trajectory crossing 
points. 
 
Sector Connectivity: Ensures that flight f must spend at least 

! 

l fj  units of time in sector j before proceeding to sector 

! 

" j  if j and 

! 

" j  are consecutive sectors along the path of flight f, 
 
    

! 

w
f,t + l fj

" j 
#wft

j
$ 0,%f & F, t & Tf

j,  j = P(f, i),  such that i < Nf ,  and " j = P(f, i+1)                                   (3) 
 
Time Connectivity: Requires that if a flight has arrived at sector j by time t, then 

! 

w ft
j  has a value of 1 for all later 

time periods, 
 
          

! 

wft
j
"wf,t"1

j
# 0,  $f % F, j% Pf ,  t % Tf

j                                                              (4) 
 
 It is worth noting that the original model presented in Ref. 6 also includes a set of arrival capacity, departure 
capacity, and flight connectivity constraints that are used to handle flight connectivity.  Since these constraints were 
not relevant to the current en route flight scheduling problem, their description has been omitted.  To illustrate the 
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use of this model, the wind-optimal routes for east- and westbound CEP flights will be scheduled to minimize 4-D 
trajectory crossing points. 

C. Scheduling Heuristic 
 According to Ref. 6, an upper bound on the number of variables

! 

w ft
j  and the number of constraints for the model 

described in Section II.B is given by the following equations 

! 

F "D "X  and 

! 

2 "K "T + J "T + 2 "F "D " X +C "D , 
respectively.  Here F is the total number of flights, T is the total number of time periods (in minutes for this study), J 
is the total number of sectors, K is the total number of airports, C is the total number of continued flights, D is the 
maximum cardinality, or number of elements, of the set of feasible times for flight f to be in sector j, and X is the 
maximum number of sectors (i.e., machines) that a flights passes through.  The values of each of these parameters 
and the upper bounds on the number of variables and constraints for a typical problem encountered in this study is 
shown in the row labeled “Full Problem” in Table 1.  As can be seen from this table, the upper bound on the number 
of variables and especially the number of constraints can grow exceedingly large.  This is due in part to the long 
time horizon, T=1,800 minutes, and the number of machines involved, J = 9,000, associated with scheduling a days 
worth of CEP flights.  To put the number of machines (i.e., regions of airspace) involved in this study in perspective, 
there are roughly 800 sectors covering the airspace associated with the 20 Centers that cover the contiguous United 
States.  The row labeled “Sub problem” will be described in detail later in this section. 
 

 
 D X F T K J C Variable 

Upper 
Bound 

Constraint 
Upper 
Bound 

Full 
Problem 

100 100 170 1,800 40 9,000 0 1,700,000 19,744,000 

Sub 
problem 

100 100 30 600 40 1,100 0 300,000 1,308,000 

 
Table 1. Upper bound on the number of variables and constraints for a typical 30 nmi grid scheduling 
problem. 
 
 The most effective way to reduce the computational complexity associated with the size of the scheduling 
problem that was encountered in this study was to (1) reduce the number of machines, J; or (2) reduce the number of 
time periods, T.  Reducing the number of machines, J, involves either increasing the area of coverage of each 
machine, which is the approach taken in this paper, or developing a sparse collection of specialized machines that 
accounts for the prevailing traffic flows.  Although the former of these two approaches was taken for the current 
study, future research that addresses the latter of these two approaches would be beneficial.  Reducing the number of 
time periods, T, can be accomplished by either increasing the time step, or partitioning the problem into a number of 
sub-problems while maintaining the one-minute step size used in this study.  Increasing the time step beyond one 
minute would have greatly decreased the resolution of the grid-based trajectories, which was undesirable for the 
current application.  Therefore the following heuristic was developed to divide the original scheduling problem into 
a set of N computationally tractable problems to alleviate the temporal factors influencing the computational 
complexity. 
 
Step 1: Flight Partitioning 
Partition the original set of N flights into a set of 

! 

N
sub

 flights 

! 

{Fi i = 1,...,Nsub} .  For this study, the set of flights 
was subdivided by leveraging the ration by schedule (RBS) concept that is an integral component of the Federal 
Aviation Administration’s ground delay program (GDP).13  For GDPs, rationing of arrival resources is based on the 
schedule arrival times of flights, whereas in this study the rationing is based on the scheduled oceanic entry time for 
each flight.  For this study, the flights are assumed to fly on their nominally scheduled routes in the domestic 
airspace and wind optimal routes in the oceanic airspace.  Therefore, the aforementioned oceanic entry point 
corresponds to the position at which the structured domestic route intersects the horizontal grid that has been 
overlaid on the CEP.  More details regarding this horizontal grid are presented in Section III.A.  As a result of the 
rationing employed in this heuristic, the first n flights that are scheduled to enter the oceanic airspace will appear in 
F1, the next n flights will appear in F2.  This procedure is continued until the original set of N flights has been 
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allocated to one of the Nsub subset of flights.  Corresponding to each subset of flights, a subset of machines 

! 

{J i  i = 1,...Nsub} , and time intervals 

! 

{Ti  i = 1,...Nsub}  is generated.  
 
Step2: Flight Scheduling 
Solve Eqs. (1)-(4) using the ith subset of flights 

! 

F
i
, machines 

! 

J
i
, and times 

! 

T
i
, and store the resulting machine 

demand 

! 

D k
i

(t)  that can be obtained from Eq. (2). 
  
Step 3: Adjust Cell Capacity 
If additional flights remain to be scheduled after the ith stage, then reduce the cell capacity,

! 

S j (t) , appearing in Eq. 
(2) for the (i+1)th set of flights that remain to be scheduled and repeat Step 2, otherwise terminate.  The resulting 

residual cell capacity will be given by 

! 

S j (t) = max( S j (t) " D k
l
(t),  0 )

l= 0

i

# . 

 
 Using the heuristic outlined above, the original CEP scheduling problem was reduced to a series of six smaller 
sub-problems.  The upper bound on the number of variables and constraints that were encountered in the sub-
problems when a 30 nmi grid was used are shown in Table 1.  It is important to note that because of the problem 
formulation, the upper bound on the number of variables increases from 

! 

F "D " X  to 

! 

F "D " X + (N #1) " J "T .  This 
increase is due to the fact that the sector demand variables, which are mentioned in Step 2, have been cast as 
variables here.  Future efforts should address modifications to the current scheduling heuristic that reduce the upper 
bound on the number of variables.  The “Sub problem” results in Table 1 therefore reflect variable counts for the 
first stage of the sub-divided problem.  As can be seen from this table, this approach is an effective means by which 
the upper bound on the number of variables and constraints can be reduced by a factor of 50 and 25, respectively.  
Results utilizing this heuristic are shown in Section III.B.  An in-depth investigation into the optimality gap between 
the true optimal solution and the solution resulting from this heuristic is outside the scope of the current study, but 
will be investigated in a follow on research effort. 

III. Results 
 
 The set of flights was extracted from historical Aircraft Situation Display to Industry (ASDI)14 data for Dec. 

14-16 and 19-20 of 2005.  Using the wind fields from the Global Forecast System (GFS) Atmospheric Model15 and 
the algorithm for generating “oceanic center boundary (OCB)” wind-optimal routes that is defined in Ref. 4, routes 
were calculated for each of the flights, whose scheduled flight plan nominally utilized one or more of the seven CEP 
routes depicted in Fig. 1a.  For reference, the wind-optimal routes calculated in Ref. 4 make use of a backward 
recursion, minimum-travel-time dynamic programming algorithm.  An example of the simulated wind-optimal flight 
tracks from Dec. 20, 2005 between the Hawaiian Islands and the west coast of the United States mainland is shown 
in Fig. 4a. 

Before the model that is described in Section II.B can be used to schedule the flights, the 4-D flight trajectories 
must first be converted from the discrete time varying latitude, longitude, altitude, system 

! 

" ,# ,z, t( )  to the time 
varying, grid based system that involves a row index i, a column index j, and a flight level index k, 

! 

(i, j,k, t) .  This 
method was discussed in Section II.A and examples of the trajectories on a 30 nmi grid and a 100 nmi grid are 
presented in Fig. 4b and 4c for all CEP flights that were scheduled to fly on Dec. 20, 2005.  Note that two-
dimensional projections are being used for display purposes, whereas the actual scheduling calculations utilized the 
three-dimensional grid based trajectories as input, and produced the 4-D flight trajectories (time being the 4th 
dimension) as output.  Recall that the 30 nmi grid is being used here, because this will soon be the lateral and 
longitudinal separation standard in the CEP.  The 100 nmi grid is being used because it substantially reduces the 
number of cells/machines that each flight is required to pass through, which in turn reduces the dimensionality of the 
integer programming-based scheduling model that is being solved.  Additionally, the 100 nmi grid is large enough to 
potentially accommodate two to three flights at any given instance of time.  After the job scheduling process, any 
trajectory crossing points within these larger grid cells could be resolved using tactical ground-based, or flight deck 
based tactical separation maneuver strategies. 

The remainder of this section is structured as follows.  In Section III.A, characteristics regarding the number of 
machines, jobs, and operations, associated with the unscheduled flight trajectories will be discussed, so the reader 
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gains an appreciation for the magnitude of the problem being considered in this study.  Results from the scheduling 
algorithm that make use of the heuristic described in Section II.C are presented in Section III.B. 

 
 

 
 

Figure 4. [a] Oceanic wind optimal flight tracks, [b] tracks on 30 nmi grid, and [c] tracks on 100 nmi grid for 
Dec. 20, 2005. 
 

A. Unscheduled Machine, Job, Operation, and Usage Statistics 
The unscheduled machine, job, operation, and occupancy statistics for Dec. 14-16 and 19-20, 2005 are presented 

in Tables 2 and 3 for both the 30 nmi grid and 100 nmi grid, respectively.  Here “unscheduled” indicates that all 
flights are on wind-optimal routes, and no attempt has been made to eliminate or reduce the number of 4-D 
trajectory crossing points using the scheduling approach described in Section II.  Recall that within the current job-
shop scheduling formulation, a machine refers to a region of airspace (either 30 nmi x 30 nmi or 100 nmi x 100 
nmi); a job refers to a flight; and a flight plan is decomposed into a series of operations each of which is processed 
by a single machine.  The horizontal grid used in this study ranged from 20O to 50O north latitude and from 121O to 
154O west longitude, while the vertical grid extended from flight level 180 to flight level 400 in increments of 1,000 
feet.  For reference, the horizontal grid used in this study was roughly 1,500 nmi wide by 1,800 miles long.  By 
comparison, a rectangular grid placed over the contiguous U.S. is roughly 2,600 nmi wide by 1,400 nmi long.  
Therefore the area over which flights were being scheduled covered a region of airspace that was roughly three-
quarters of the size of the contiguous U.S.   The theoretical upper bounds on the number of machines (i.e., cells) that 
could be used for the 30 nmi and 100 nmi cases were 87,120 and 7,254, respectively.  As can be seen by comparing 
these figures with the actual machine counts that appear in Tables 2 and 3, only about 3% of the available machines 
were used with the 30 nmi grid and roughly 6% of the machines were used with the 100 nmi grid case.  
 

Date Machine Count 
(Airspace Regions) 

Job  
Count 

(Flights) 

Machines with 
Occupancy 

! 

"  2 
Instances 
Machine 

Occupancy 

! 

"  2 

Average 
Operations 

per Job 
12/14/05 2,457 150 329 1,089 78 
12/15/05 2,528 157 224 479 79 
12/16/05 2,628 206 300 1,027 81 
12/19/05 2,559 195 256 719 81 
12/20/05 2,210 175 316 704 81 

 
Table 2. Unscheduled machine, job, operation, and occupancy statistics for the 30 nmi grid. 
 
 The number of unique machines, and the total number of instances each of these machines exceed the capacities 
for both the 30 nmi and 100 nmi grids, are presented in the forth and fifth columns of Tables 2 and 3, respectively.  
For the 30 nmi grid, the maximum number of operations that can occupy any machine at an instance of time is one 
for this study, while for the 100 nmi grid the number of operations permitted in a machine was varied between two 
and three.  As can be seen from the results in these tables, the total number of machines requiring scheduling 



 
American Institute of Aeronautics and Astronautics 

 

9 

dramatically drops when the grid size is allowed to increase and the associated capacity of each machine is also 
allowed to increase.  For the 30 nmi grid (see Table 2), roughly 10% of all machines required scheduling when the 
machine capacity was set to one.  When the grid size was increased to 100 nmi and the capacity of each machine 
was two, the number of machines requiring scheduling varied between 8% and 15%, but when the machine capacity 
was increased to three the number of machines requiring scheduling only ranged between 2% and 5% of all 
machines.  Note that a machine capacity of two or three indicates that two or three flights are allowed to use a 
machine (i.e., occupy the same region of airspace) at a given instance of time.  Finally, the average number of 
operations per job decreased by roughly a factor of three when transitioning to the large grid.  The decrease in 
machine count and operations per job associated with the 100 nmi grid is expected to significantly decrease the 
computational complexity of the integer programming scheduling model that is to be solved for these cases. 
 

Machines with 
Occupancy 

Instances 
Machine 

Occupancy 

Date Machine  
Count 

(Airspace Regions) 

Job 
Count 

(Flights) 
= 3 

! 

"  4 = 3 

! 

"  4 

Average 
Operations  

per Job 

12/14/05 494 150 61 22 742 96 25 
12/15/05 451 157 36 10 272 26 26 
12/16/05 437 206 63 8 607 29 26 
12/19/05 445 195 47 22 553 56 27 
12/20/05 383 175 57 7 397 35 26 

 
Table 3. Unscheduled machine, job, operation, and occupancy statistics for the 100 nmi grid. 

 
 In addition to the aggregate machine occupancy statistics appearing in Tables 2 and 3, the total number of 
unscheduled operations that require use of a machine is also of interest and is displayed in Fig. 5.  This information 
is beneficial for understanding average and maximum machine usage requirements.  In addition, this information 
indirectly influences the computational complexity of the scheduling algorithm because of the presence of the sector 
capacity constraint that is defined in Eq. (4).  When drawing this comparison, it is important to recall that the sector 
capacity in Eq. (4) is specified for a specific sector j and time t, whereas the results presented in Fig. 5 are machine 
occupancy statistics over an entire day.  The most notable difference between the results presented in the two images 
in Fig. 5 is the maximum number of operations occupying each machine for the 30 nmi and 100 nmi grids.  For the 
30 nmi grid, each machine tends to process three or fewer operations per day, whereas in the 100 nmi grid case each 
machine tends to process 16 or more operations per day.  Intuitively, these results are expected, because as the 
airspace is partitioned into large regions the number of operations that require processing in each region should also 
increase. 
 

 
 

Figure 5. Total unscheduled operations per machine for [a] the 30 nmi grid and [b] the 100 nmi grid. 

B. Scheduling Results 
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In this section, the results of scheduling the jobs (i.e., flights) that were discussed in Section III.A using the 
model and heuristic described in Sections II.B and II.C are presented using the Dec. 20, 2005 data set.  Results from 
other days are expected to yield similar results.  Three distinct sets of scheduling results were generated.  For the 
first set of calculations, the 30 nmi grid was used with a cell capacity of one and the problem was divided into six 
sub-problems using the heuristic described in Section II.C.  The second set of calculations utilized the 100 nmi grid 
with a machine capacity of two and this problem was also divided into six sub-problems.  Finally, the third set of 
calculations utilized the 100 nmi grid with a cell capacity of three and again the problem was divided into six sub-
problems.  As previously discussed, the first set of calculations with the 30 nmi grid is believed to be the most 
restrictive yet will ensure that all trajectory crossing points are strategically eliminated through job scheduling.  The 
second and third sets of calculations are believed to be less restrictive and allow for a limited number of trajectory 
crossing points to exist after scheduling, which would later be resolved through tactical separation maneuvers.  None 
of these cases were solvable without first partitioning the original problem into a number of smaller sub-problems on 
the hardware that was available. 

Before examining the scheduling results, it is informative to examine the implications of subdividing each of the 
aforementioned sets of scheduling calculations into sub-problems.  In Table 4, the number of variables, constraints, 
and the runtime (as determined by the Unix “time” command) are presented for each of the 0-1 integer programming 
problems (see Section II.B) for the third set of calculations, for which the 100 nmi grid was used with a cell capacity 
of three.  These calculations were performed on a Redhat Linux based-laptop computer with a 3.0 GHz Pentium 4 
processor and 1 GB of RAM.  All scheduling results were generated using AMPL/CPLEX (version 10.0) and the 
variable and constraint counts listed in Table 4 are values prior to AMPL’s “presolve” phase.  The total variable 
count for each stage reduces to less than 80,000 variables after the presolve phase, similarly the number of 
constraints never exceeds 280,000 after the presolve phase.  For this problem, the upper bound on the number of 
variables and constraints for the full problem would have been 744,625 and 2,185,850, respectively.  Similarly, after 
accounting for the additional sector demand variables in the sub-problem formulation, the upper bound on the 
number of variables and constraints for any one sub-problem would have been 4,191,625 and 2,185,850, 
respectively.  This assumes K = 2, T = 1800, J = 383, D = 115, X = 37, and F = 175 for the expressions given in 
Section II.C.  As can be seen from this table, subdividing the problem greatly reduced the size of each scheduling 
stage, and in fact none of the original scheduling problems could be run to their entirety on the hardware available 
for this study due to memory limitations. 

 
Sub-problem Integer Programming 

Variable Count 
Integer Programming 

Constraint Count 
Runtime (sec) 

1 75,558 442,439 6.2 
2 180,326 517,990 21.4 
3 234,913 572,488 8.7 
4 732,699 1,213,471 17.5 
5 599,201 1,001,217 10.6 
6 830,400 1,254,384 12.0 

Table 4. 0-1 Integer programming variable, constraint, and timing information for the Dec. 20, 2005 data 
set with a 100 nmi grid, 6 sub-problems, and machine capacity of 3. 
 
 The total delays, machine occupancy, and adjusted total time savings for the 175 jobs (i.e., flights) that were 
scheduled on Dec. 20, 2005 are presented in Table 5.  Here the adjusted time savings is equal to the time savings 
resulting from the wind-optimal routing minus the delay associated with scheduling the flights.  By increasing the 
grid size from 30 nmi to 100 nmi and allowing simultaneous processing of multiple operations per machine, the total 
delays significantly decreased.  For example, the delays decreased by nearly 70% when transitioning from the 30 
nmi case with a capacity of one to the 100 nmi case with a capacity of two.  This savings of course comes at the 
expense of leaving a significant number of 4-D trajectory crossing points unresolved in the 100 nmi case, which may 
require tactical flight spacing controls.  A further order-of-magnitude reduction in the total delays was observed 
when the capacity of the 100 nmi grid cell was increased form two to three.  It is also worth noting that all delays 
were absorbed on the ground for this scheduling case.  As expected the number of machines requiring scheduling 
and the total number instances that machine intersections occurred which required scheduling dramatically reduced 
when moving from the 30 nmi grid to the 100 nmi grid.  Finally, when an average “oceanic center boundary” wind-
optimal time savings of 4.8 minutes is assumed for each job,4 then the total adjusted time savings varied between 
318 and 808 minutes, which corresponds to an average adjusted time savings of 1.8 and 4.6 minutes, respectively.  
Assuming an average airline operating cost of $29/hr,16 the combined routing and scheduling time savings translates 
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into an annual savings that ranges $3.4 million and $8.5 million.  Any tactical resolutions required to alleviate 4-D 
trajectory crossing points in the 100 nmi grid case could further reduce the average per flight time savings.  For this 
initial study, no attempt has been made to estimate the costs associated with these tactical maneuvers. 
 

 
Machines with Intersections Instances of Machine 

Intersections 
Scheduling 

Scenario 
Total 
Delay 
(min) Unscheduled Scheduled Unscheduled Scheduled 

Adjusted 
Total Time 

Savings (min) 
30 nmi, 

capacity=1 
522 316 0 704 0 318 

100 nmi, 
capacity=2 

311 64 0 432 0 529 

100 nmi, 
capacity=3 

32 7 0 35 0 808 

 
Table 5. Dec. 20, 2005 scheduling results for: (1) 30 nmi grid, six sub-problem, capacity=1; (2) 100 nmi, six 
sub-problems, capacity =2; and (3) 100 nmi grid, six sub-problems, capacity=3.  

 
Although the average delay per job ranged from 3.0 minutes for the 30 nmi case to 0.18 minutes for the 100 nmi 

case with capacity equal to three, the actual per job delays were found to be far less equitable and unevenly 
distributed.  These results are shown in Fig. 6 for the 175 jobs that required scheduling on this day for each of the 
three scheduling cases.  As can be seen from this figure, the individual job delays were found to range from zero for 
a significant number of flights to 99 minutes for a single flight in one case.  The largest job delay cases also tended 
to occur for jobs with the highest job index.  This trend is to be expected since the flights with the larger job indices 
were some of the last to be scheduled, because of the heuristic that was employed in this study to subdivide the 
original scheduling problem into N smaller sub-problems.  Future studies should consider mechanisms for more 
equitably distributing delays amongst all flights being scheduled. 

 

 
Figure 6. Total delays per job for (1) 30 nmi grid, six sub-problem, capacity=1; (2) 100 nmi, six sub-
problems, capacity =2; and (3) 100 nmi grid, six sub-problems, capacity=3. 

IV. Conclusions 
 This paper contains the results of the first extensive study designed to assess the impact of strategically 
scheduling flights on user-preferred routes in the Central East Pacific in order to reduce or eliminate the number of 
trajectory crossing points.  These crossing points were identified in a previous study as a source of concern due to 
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the controller workload associated with ensuring the safe separation of these flights in the oceanic environment.  
Minimum-time, wind-optimal routes were used as a surrogate for the actual user-preferred routes.   
 To accomplish the flight scheduling, an innovative technique was used to cast the original air traffic flow 
problem in terms of a job shop scheduling problem.  A 0-1 integer programming model was then used to calculate 
the optimal departure and en route delays necessary to generate feasible flight schedules.  The computational 
tractability of the flight scheduling model was enhanced by utilizing a ration-by-schedule based heuristic to partition 
the original scheduling problem into N sub-problems.   
 By varying attributes of the machines in the job shop scheduling formation, two distinct types of feasible 
schedules are obtained.  The first type of schedules, which rely on the 30 nmi x 30 nmi machines, are highly 
restrictive but free of all trajectory crossing points, while the second type, which rely on the 100 nmi x 100 nmi 
machines, are less restrictive but may require limited tactical flight separation maneuvers to alleviate residual 
crossing points.  After allowing user-preferred routes and strategically reducing the number of 4-D trajectory 
crossing points, the adjusted per flight time savings varied between 1.8 minutes and 4.6 minutes, respectively, 
depending on the size of the airspace (i.e., either 30 nmi x 30 nmi or 100 nmi x 100 nmi) associated with the 
machines in the job shop scheduling problem.  The estimated annual economic benefit to the airlines was found to 
vary between $3.4 million and $8.5 million when wind-optimal routing and strategic flight scheduling was 
introduced into the CEP. 
 Finally, future extensions to this study will examine the development of sparse grids that take advantage of the 
prevailing traffic patterns in the CEP in order to reduce computational complexity.  In addition, more sophisticated 
multi-objective cost functions that equitably distribute delays will be examined, as will simpler heuristic based 
scheduling methodologies. 
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