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Strategic Planning with Unscented Optimal Guidance for 
Urban Air Mobility  

Hok K. Ng1 
NASA Ames Research Center, Moffett Field, CA 94035-1000 

This study proposes a strategic trajectory planning framework to support development of 
Urban Air Mobility (UAM) traffic networks and optimization of UAM aircraft trajectories 
that are robust to uncertain wind fields.  The development of UAM traffic networks considers 
static aviation constraints and dynamic weather constraints in urban airspace and the 
connections to ground transportation networks for preliminary selection of feasible time-
optimal routes. The trajectory optimization of UAM aircraft utilizes an unscented optimal 
guidance approach to generate cost-optimal trajectories constrained on the selected sigma 
values of probability distribution of uncertain wind fields while ensuring that the end-point 
constraints are met for reducing wind-induced trajectory uncertainty. Unscented guidance 
commands are assessed based on trajectory perturbations at subsequent end-points  in various 
wind fields by conducting Monte Carlo simulations. An example of wind-optimal UAM 
corridor and the associated trajectory-based operation volume is created utilizing the 
perturbations of the unscented trajectories for preliminary assessment of required aircraft 
separation minima without knowledge of aircraft navigation performance.  

I. Introduction 
NASA is conducting a far-term concept exploration for an on-demand, user-preferred, and high-density air transport 

system to meet the potential demands from Unmanned Aircraft Systems (UASs) and future operations of electric 
Vertical Take-Off and Landing (eVTOL) aircraft in urban areas.   The future urban transport system demands 
integrated air and ground traffic networks that enable large numbers of small UASs and eVTOL aircraft to operate 
safely and energy-efficiently in urban airspace that extends upward to approximately 5,000 feet Above Ground Level 
(AGL).  This system needs to be adaptive to the operational changes brought by new entrants and is designed for 
minimum disruption of existing airspace operations and urban residents through optimized urban airspace designs, 
precise and accurate strategic trajectory planning, and proactive self-monitoring of system states in the presence of 
various sources of uncertainty.1  

The concept of operations for NASA’s UAS Traffic Management (UTM) focuses on enabling safe operations of 
small UASs, typically 55 lbs and below, in low-altitude airspace.2 Past studies3-5 explore the concepts of On-Demand 
aviation for high-speed Mobility (ODM) of passenger transport utilizing eVTOL aircraft. Extending the scope of  the 
UTM concept, the requirements and a framework for integrating and deploying ODM operations were proposed.6 
NASA has recently provided high-level descriptions of near-term and mid-term operational concepts for UAM 
vehicles.1  Future UAM traffic networks are designed for manned and unmanned UAM operations for a great variety 
of flying vehicles with different vehicle performance and mission profiles.  Although near-term operations may be 
restricted to Visual Meteorological Conditions (VMC), for these operations to become a viable mode of transportation 
for the general public, they will need to be scalable across disruptive conditions.  UAM operations are required to be 
resilient to a wide range of disruptions such as unexpected changes in weather conditions and localized sub-system 
failures (e.g., single vehicle or software tool) to widespread disruptions (e.g. GPS outage or multi-system cascading 
failures) and cause minimal noise annoyance to urban communities.  

This study proposes a strategic trajectory planning framework capable of supporting the development of UAM 
traffic networks and the optimization of UAM aircraft trajectories for increasing robustness of UAM operations in the 
presence of various sources of uncertainty.  The framework includes the development of door-to-door routing options 
involving multi-modal transports to alleviate potential congestion on the ground and the en-route trajectory 
optimization of UAM aircraft in uncertain weather conditions. The development of UAM routing options considers 
the static aviation and dynamic weather constraints in urban airspace and the connections to ground transportation 
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networks for preliminary selections of feasible time-optimal door-to-door routes. The trajectory optimization of UAM 
aircraft utilizes an unscented optimal control approach to calculate pre-computed, open-loop aircraft guidance 
constrained on the probability distribution of uncertain wind fields. The unscented optimal guidance commands 
produce cost-optimal trajectories that meet the trajectory constraints with guaranteed margin for the modeled 
uncertainties and reduce wind-induced trajectory uncertainty in order to minimize frequency of tactical re-planning in 
actual operations and increase air traffic system predictability.  
 Section II introduces the data inputs and the analytical approaches to the strategic planning framework for 
designing wind-optimal, obstacle-avoidance routings, and unscented guidance for UAM aircraft. Section III presents 
an illustration of the application of deterministic wind-optimal, obstacle-avoidance routings and their predicted 
potential travel time savings of simulated future UAM traffic in the Dallas/Fort Worth, Texas metropolitan area. 
Section IV presents the initial development efforts of UAM aircraft trajectories based on unscented optimal control 
approach and validates the unscented optimal solutions for optimality by checking the necessary conditions of 
Pontryagin’s Minimum Principle.  Section V evaluates the unscented guidance using Monte Carlo simulations. Section 
VI provides the concluding remarks. 

II. Strategic Planning Process 
 The strategic planning framework aims to automatically create strategic flight plans with pre-computed aircraft 
guidance that can reduce trajectory uncertainty given uncertain wind fields with guaranteed upper bounds on potential 
trajectory perturbations without real-time updates. Figure 1 illustrates this framework that includes the process of 
selecting origin and destination vertiports, a standard optimal control approach and unscented guidance optimization 
with feedback from Monte Carlo simulations analysis.  The strategic planning process utilizes real-time ground traffic 
and environmental information to enhance overall operational efficiency of UAM and ground transportation networks, 
and pre-computes unscented UAM aircraft guidance to help ensure that trajectory constraints are satisfied in the 
presences of uncertainties.  
 The first step of strategic planning integrates aircraft trajectory optimization in the presence of deterministic wind 
fields and path constraints with the consideration of ground infrastructure (e.g., aviation obstacles and road networks) 
to create a preliminary module capable of calculating door-to-door routes that involve ground and UAM transportation 
networks. The implementation utilizes Apple’s Mapkit7 application framework for the integration of ground traffic 
networks and potential UAM routes to compute multi-modal transport routings with estimated travel times.  Given 
the selected routings, the second step of this strategic planning process models uncertain wind disturbances and/or 
vehicle aerodynamic parameters through unscented transformation. Then, an unscented optimal guidance approach is 
adopted to develop optimal guidance that minimizes a cost function while producing UAM aircraft trajectories that 
meet the end-point and path constraints with guaranteed safety margins at any reference location along the flight plan 
in the presence of modeled uncertainties.   
 The algorithm development and implementations are built upon past research results and the latest development 
in unscented optimal control. A previous study8 developed a trajectory optimization algorithm to generate wind-
optimal trajectories that minimize a climate cost objective function while avoiding pre-determined airspace regions 
prone to persistent contrails formation for transpolar flights in deterministic wind fields. The wind-optimal guidance 
for aircraft heading is a solution of the non-linear optimal control problem formulated with soft path constraints that 
satisfy the necessary conditions based on Pontryagin’s Minimum Principle9.  In the absence of path constraints, the 
dynamical equation governing optimal aircraft heading is the solution of the Zermolo10 problem derived on a spherical 
Earth surface. To cope with uncertain disturbances to en-route aircraft brought by convective weather, a stochastic 
dynamic programming approach11 is developed for routing aircraft in the presence of winds and en-route convective 
weather.  The search space and decision horizons are discretized to incorporate route deviation probabilities by adding 
random disturbance that are state and control-inputs dependent in the discrete aircraft dynamical equations.   
 In this study, the first step of the strategic planning applies the dynamical equation governing optimal aircraft 
heading in the absence of path constraints to generate wind-optimal extremals at each of the discretized decision 
horizons sequentially.  This is based on the concept of dynamic programming to search for a strategic route that 
connects all the extremals between the origin and destination while satisfying all the path constraints. Note that this 
step of the problem formulation incorporates deterministic weather and static airspace constraints for generation of 
potential UAM aircraft wind-optimal and obstacle-avoidance routes between vertiports. 

The second step of the strategic planning adopts an unscented optimal control approach to solve for unscented 
guidance commands subject to the constraint of a set of sigma points, which represent probability distribution of the 
modeled uncertainties, to manage uncertain disturbances to UAM aircraft for enhancing the predictability of the 
trajectory to the greatest extent possible. A recent paper12 proposes unscented optimal control to design safe guidance 
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commands that can produce orbits with guaranteed safety margins in the presence of an uncertain gravity field. 
Unscented optimal control is based on combining the concept of the unscented transform with standard optimal control 
to produce a new approach for enabling open-loop management of navigational, gravitational and other uncertainties. 
This step of the strategic planning explores the unscented optimal control concept for designing safe guidance for 
UAM aircraft operations in the presence of an uncertain wind field. 

 

 
Figure 1.  Strategic planning with unscented optimal guidance formulation 

 
The input to the strategic planning process leverages the National Oceanic and Atmospheric Administration’s 

(NOAA) High Resolution Rapid Refresh atmospheric model13 (HRRR), and the United States Geological Survey’s 
(USGS) elevation models14 and ground structures and traffic data for preliminary modeling of potential static and 
dynamic constraints to UAM aircraft and alternative urban transportation mode on the ground. The top left section of 
Fig. 1 shows the wind forecasts near land surface from HRRR for the contiguous United States, the terrain elevations 
in San Francisco Bay Area, as wells as air and ground traffic patterns.  Among several sources of time-varying urban 
data, the initial UAM routing network development will integrate an atmospheric model providing high-resolution 
null-cast and forecasted atmospheric conditions at altitudes below approximately 5,000 feet for modeling and 
predicting winds and potential disruptions of urban air transport due to weather.   

The current strategic trajectory planning algorithms assume that UAM aircraft trajectories are similar to fixed-
wing aircraft during cruise. Defining f  as longitude, q  as latitude, h  as  altitude, V  as  true airspeed,  𝜓 as aircraft 
heading, g  as flight path angle,  µ as bank angle, and let M equal aircraft mass, T equal thrust,  D equal drag, L equal 
lift, with 𝑤! as the easterly wind component,  𝑤" as the northerly wind component, and 𝑤# as the vertical wind 
component, the general formulation of the problem includes the aircraft dynamical equations Eqs. (1-6) in spherical 
coordinates in the presence of horizontal and vertical winds. 

  

𝜙̇ =
𝑉𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓 + 𝑤!

𝑅𝑐𝑜𝑠𝜃 																																																																															(1) 
 

𝜃̇ =
𝑉𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓 + 𝑤"

𝑅 																																																																																(2) 

ℎ̇ = 𝑉𝑠𝑖𝑛𝛾 + 𝑤#																																																																																										(3) 
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𝑉̇ = 7
𝑇(𝑀, ℎ) − 𝐷(𝑀, ℎ, 𝑛)

𝑀𝑔 − 𝑠𝑖𝑛𝛾>𝑔																																																		(4) 

𝜓̇ =
𝐿𝑠𝑖𝑛𝜇
𝑀𝑉𝑐𝑜𝑠𝛾																																																																																																(5) 

𝛾̇ =
𝐿𝑐𝑜𝑠𝜇 −𝑀𝑔𝑐𝑜𝑠𝛾

𝑀𝑉 																																																																															(6) 
 
The end-point and path cost functionals are defined as:  

𝐽E𝑥(∙), 𝑢(∙), 𝑡$J = 𝐸E𝑥L𝑡$M, 𝑡$J +	N 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡)	𝑑𝑡																																							(7)
%!

%"
 

The strategic routings and unscented guidance are generated by minimizing the chosen objective cost function, e.g. a 
minimum-time problem is equivalent to Minimize𝑢 	{	𝐽E𝑥(∙), 𝑢(∙), 𝑡$J} =

Minimize
𝑢 	Z𝑡$[	using assumed controls, u,  

subject to the aircraft dynamical equations (1-6) and constrained on aircraft state, x and the controls along path 	
𝑥&'( 	≤ 𝑥(𝑡) ≤ 𝑥&)*	, 𝑢&'( 	≤ 𝑢(𝑡) ≤ 𝑢&)*	 and the end-point conditions (𝑥(𝑡+), 𝑡+) = (𝑥+, 𝜏+),	and L𝑥L𝑡$M, 𝑡$M =
(𝑥$ , 𝜏$	).  

III. Deterministic Wind-optimal UAM Routes 
This section presents the algorithm development of the first step of strategic planning. Strategic planning of UAM 

aircraft operation can benefit from development of optimal routings given a common set of constraints including both 
static and dynamic information. The initial routings consider static constraints including USGS’s terrain elevation 
models and static aviation obstacles,15 and the dynamic effects and impacts of weather. For flights during cruise, the 
flight path angle and rate changes are assumed to be zero, i.e. rate 𝛾 = 0, 𝛾̇ = 0. Since cruise speed varies with aircraft 
type and depends on the actual operation, a constant aircraft cruise speed is assumed 𝑉̇ = 0. The aircraft dynamical 
equations used for developing UAM routes that avoid the chosen aviation obstacles in the presence of winds are 𝜙̇ =
,-./012#
3-./4

  and 𝜃̇ = ,/'(012$
3

. The wind-optimal and obstacle-avoidance route is developed based on integration of 

wind-optimal headings 𝜓̇ = 56%&'((0,9,4,2#,2$,,)
3-./4

,	where 

𝐹2'(;(𝜓, 𝜙, 𝜃, 𝑤!, 𝑤", 𝑉) = [−𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓
𝜕𝑤!
𝜕𝜙 + 𝑐𝑜𝑠<𝜓𝑠𝑖𝑛𝜃𝑤! + 𝑐𝑜𝑠<𝜓𝑐𝑜𝑠𝜃

𝜕𝑤!
𝜕𝜃 −

𝜕𝑤"
𝜕𝜙  

																													+𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑤" + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃
𝜕𝑤"
𝜕𝜃 + 𝑉𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠<𝜓

𝜕𝑤"
𝜕𝜙  

and the concept of dynamic programming that minimizes the cost functionals as shown in (7) where the running cost, 
F, along the path penalizes obstacle interceptions. 

																																																						𝐽E𝑥(∙), 𝑢(∙), 𝑡$J = 𝑡$ +	N 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡)	𝑑𝑡																																																																(8)
%!

%"
 

Figure 2 presents a potential optimal route for UAM aircraft cruise at 100 knots airspeed at 2,000 ft MSL from 
Dallas/Fort Worth International Airport (DFW) to McKinney Aero Country heliport in the presence of winds and 
aviation obstacles given the elevation data in the region. The green arrows represent the direction and magnitude of 
the winds. The center of each aviation obstacle is depicted with a magenta dot, and the potential buffer zone boundary 
is outlined by a magenta contour. The blue contours in the background and the color bars show the terrain elevations 
in the region.  The great-circle route is plotted with a black-dotted line in comparison with the wind-optimal route, 
depicted in blue that avoids en-route aviation obstacles. The great-circle route is generated based on great-circle 
aircraft headings with perturbation adjustments using wind vectors along the route. A set of backward wind extremums 
that are plotted with the Red-Green-Blue lines, are generated by backward integration of wind-optimal heading 
equation from the heliport of McKinney Aero Country to produce minimum time-to-go from any point to the 
destination. Similarly, multiple sets of forward wind extremums that are plotted with the fan-shaped lines, are 
generated by forward integration of the wind-optimal heading equation from the origin heliport at DFW to produce 
minimum time-to-go from the origin to any points in the region. The generation of forward wind extremums are done 
sequentially to allow perturbation of wind-optimal headings for obstacle avoidance every minute in this particular 
example.  Note that the generation of the wind-optimal, obstacle-avoidance route depends on the frequency and the 
allowable magnitude of the heading changes that can be further optimized through an iterative process. The size of 
each buffer zone can be designed using the local wind forecast and the vehicle performance data such as cruise speeds 
to ensure en-route UAM aircraft have sufficient time in response to strong winds. Dynamic airspace constraints such 
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as hazardous weather regions can also be included in the strategic trajectory generation process. Note that all of the 
path constraints are considered deterministic in this step of problem formulation. 
 

 
 

Figure 2. Wind-optimal route avoiding aviation obstacles between two heliports 
   

The proposed framework enables selection of a set of potential take-off and landing locations for UAM aircraft 
based on origin and destination of the trip, available route connections on ground and the associated estimated travel 
times. The preliminary development uses Swift 2 on Xcode 7 and utilizes Apple’s Mapkit API for the integration of 
potential UAM routing networks, static aviation obstacles, and current ground transportation networks for the 
Dallas/Fort Worth area.  Airspace constraints such as traditional air traffic patterns and the helicopter route networks 
are not considered in this example.   

     
Figure 3. Potential time savings compared to ground transportation between Dallas/Fort Worth and two sets 

of vertiports, ranked by minutes or percent 
 

Figure 3 depicts a set of vertiports in white circles and the aviation obstacles in red dots for Dallas/Fort Worth, TX 
based on a database provided by FAA’s aeronautical information services.  For illustration, the potential UAM 
routings from DFW to all other vertiports in the area are calculated for UAM aircraft and compare the travel time for 
each route with that provided via ground transportation using Apple’s mapping service acquired through MapKit API 
for time-saving estimation. The “Vertiport Set One” contains the ten routes that have the greatest savings in terms of 

1 2 3 4 5 6 7 8 9 10
Vertiport Set One (White)

0

20

40

60

80

Ti
m

e 
Sa

vi
ng

, m
in

ut
e

1 2 3 4 5 6 7 8 9 10
Vertiport Set Two (Black)

0

50

100

Ti
m

e 
Sa

vi
ng

, p
er

ce
nt

(m) 

Longitude (deg) 

Latitude 
(deg) 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

travel time. These routes are plotted in white lines on left side of Figure 3. The estimated savings range between 55 
minutes and 75 minutes as shown on the right top bar graph in Figure 3. The total time savings are proportional to the 
distance between the vertiport pairs. The “Vertiport Set Two” includes the ten routes that have the greatest percentage 
travel time savings. The routes are plotted in black lines on the left side of Figure 3, and the associated time savings 
are shown on the right bottom bar graph. The percent time savings are about 80% and depend on traffic conditions on 
the ground. These results represent initial estimates only; they will vary with UAM aircraft speed and actual 
operational environment. 

This step of the strategic trajectory planning enables generation of a time-varying UAM trajectory option set and 
provides benefits assessments for preliminary determination of the origin and destination vertiport locations, the 
corresponding UAM routings, and their connections to a mutli-modal transportation network. Utilizing the USGS 
terrain data and MapKit API that provides geocoding look-up and location and types of ground buildings and 
infrastructures, contingency routings and landing zones can be developed during the UAM network design process.  

IV. Unscented Optimal Guidance 
This section presents the formulation process of unscented optimal guidance.  In general, the aforementioned 

strategic planning step uses weather nowcasts or forecasts, traffic conditions, and transportation schedules to plan for 
a feasible route option set door-to-door involving several modes of transport. It utilizes a given set of possible UAM 
aircraft take-off and landing locations for trade-off between time savings and travel costs. It attempts to hedge against 
the risk of delay in the presence of various sources of uncertainty. Given the deterministic wind-optimal route and 
UAM aircraft model, the development of unscented optimal guidance for UAM aircraft helps ensure that the actual 
flown trajectory satisfies the end-point and path constraints in uncertain operating conditions with a guaranteed margin 
in temporal and spatial dimensions.  Along each planned route, the estimated arrival time at each key waypoint along 
the planned trajectory is required to compute aggregated UAM aircraft counts at the departure and arrival vertiports 
and in the en-route airspace for congestion forecasts. In the presence of uncertain wind disturbances, an unscented 
optimal control solution can reduce wind-induced trajectory uncertainty. The associated spatial and temporal trajectory 
perturbations can be further assessed using Monte Carlo simulations. The unscented optimal trajectory with 
guaranteed perturbation margin provides precise information leading to self-trajectory conformance monitoring and 
more accurate congestion forecasts that reduce re-planning frequency. Section IV.A. formulates the unscented optimal 
control problem for the development of UAM aircraft trajectories in uncertain wind fields. Section IV.B. models the 
probability distribution of wind fields and its unscented transformation. Section IV.C. validates unscented optimal 
control solutions based on the necessary conditions of Pontryagin’s Minimum Principle.  

 Unscented Wind-optimal Trajectory 
This section presents the formulation of a unscented optimal control problem for the development of 4-d UAM 

aircraft trajectories in the presence of uncertain wind fields.  The unscented wind-optimal control problem is 
formulated as:  

Minimize
𝑢 	{	𝐽E𝑥(∙), 𝑢(∙), 𝑡$J} =

Minimize
𝑢 	Z𝑡$[ 

 
Subject to 

	𝜙̇= =
𝑉𝑐𝑜𝑠𝜓 + 𝑤!=
𝑅𝑐𝑜𝑠𝜃=

	 , 𝜃̇= =
𝑉𝑠𝑖𝑛𝜓 + 𝑤"=

𝑅 ,			(𝜙=, 𝑡+) = (𝜙+, 𝜏+), (𝜃=, 𝑡+) = (𝜃+, 𝜏+), 		𝜙=L𝑡$M = 𝜙$ , 𝜃=L𝑡$M = 𝜃$				(9) 

																																								⋮																																					 

	𝜙̇( =
𝑉𝑐𝑜𝑠𝜓 + 𝑤!(
𝑅𝑐𝑜𝑠𝜃(

, 𝜃̇( =
𝑉𝑠𝑖𝑛𝜓 + 𝑤"(

𝑅 , (𝜙(, 𝑡+) = (𝜙+, 𝜏+), (𝜃(, 𝑡+) = (𝜃+, 𝜏+), 		𝜙(L𝑡$M = 𝜙$ , 𝜃(L𝑡$M = 𝜃$		(10)	 

  
 The objective cost function is equivalent to that of a time-minimum problem since the path constraints are solved 
in the first step of the strategic planning process. The unscented guidance using 𝜓, V is optimized subject to n 
dynamical systems. Each models a specific representation of the probability distribution of modeled uncertain wind 
field and the same endpoint constraints. In this study, n represents to the number of sigma points computed for the 
statistical properties of a horizontal wind field in the spatial and temporal domains defined in proximity of the route. 
In general, n is not unique, but it is minimized to reduce the computational complexity of the optimization process. 

The aforementioned formulation assumes common initial constraints for the n dynamical systems. The resultant n 
trajectories using the common unscented guidance evolve over time depending on the associated sigma values of the 
wind vectors. The deviation of each of n unscented trajectories at the endpoint increases with the trip length. This 
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study further divides the problem into m stages to reduce the trajectory deviation at the endpoint. There are j unscented 
optimal control problems formulated at each of the m stages. Each problem is formulated using a different initial 
constraint that the set of j initial conditions ensembles the distribution of trajectories at the endpoint of the previous 
stage. Note that a single unscented optimal control problem can be formulated with a total of n times j number of 
constrained dynamical systems for each stage. This study seeks j unscented optimal control solutions to reduce the 
computational complexity of the formulated problem, and make the selection based on the results obtained using 
Monte Carlo simulations. Figure 4 illustrates the process for the multiple-stages unscented guidance with m stages 
n=3, and j=2.   

In this study, each of the 1 + 𝑗 ∙ 𝑚 optimal control problems is solved using DIDO©, a MATLAB® toolbox for 
solving optimal control problems. DIDO implements a guess-free,16 fast spectral algorithm based on pseudospectral 
optimal control theory.17  Section IV.B introduces unscented transformation for determination of the set of sigma 
points representing modeled probability distribution of wind fields. 

 
Figure 4. Multiple-stage unscented guidance incorporating uncertain initial position constraints 

 Unscented Transformation for Wind Uncertainties  
This section models the probability distribution of wind fields and introduces its unscented transformation for the 

selection of a set of minimum number of sigma points. NASA is currently collaborating with National Center for 
Atmospheric Research (NCAR) to identify the weather information, existing aviation weather products, and necessary 
novel approaches required to mitigate various impacts of uncertain atmospheric conditions to support safe and efficient 
UAM operations. The analysis considers vertical lift vehicle operations below 5,000 feet AGL in multiple major 
metropolitan areas in the contiguous U.S. over a substantial period of time to incorporate different demographic 
characteristics and seasonal variations of atmospheric conditions. Historical weather nowcast/forecast data are 
collected to support weather-related UAM research. Potential UAM-like operations are evaluated in Dallas/Fort 
Worth, TX. The initial focus will be on predictions of atmospheric conditions including winds, visibility, cloud top, 
turbulence, and thunderstorm for the development of UAM aircraft trajectories from takeoff to landing. For example, 
it is expected that wind information should be provided to pilots for planning takeoff and landing, and ATC should be 
advised of the intended method of departure for the near-term UAM-like operations as they are required for current 
helicopter operations. In addition, the wind information with sufficiently high spatial and temporal resolutions is 
needed for strategic and tactical route planning and for the assessment of the impact of wind on UAM operations along 
the selected routes. Figure 5 shows the magnitude distributions of near-surface wind components at Dallas-Fort Worth, 
TX based on HRRR forecasts. The mean and variance for the wind component towards the East is -0.82 and 1.16, 
respectively, and for the wind component towards the North is 3.64 and 1.7, respectively. Note that the distributions 
need not be Gaussian, and they could be statistically correlated. Based on these predicted statistical properties of the 
wind distributions, sigma points are selected for formulating the unscented optimal control problem.  

This study applied an optimized sigma point selection strategy18 to model the distribution of the wind field using 
a well-behaved set of sigma points. Similar to an Unscented Kalman Filter that estimates system states using a set of 
weighted sigma points to simulate the distribution of a random variable, the performance and computational cost of 
unscented optimal guidance depend on the selection of sigma points  and the number of sigma points used. The process 
for sigma points determination used in this study is introduced in this section. Let y be a n-dimensional random variable 
with mean, m and covariance matrx P,  and have n+1 sigma points 𝜎'. Let M be a matrix with n+1 columns of the 
mean vector m.  The first iteration step for defining the sigma points is choosing 𝑈 = [ =

√<
	5=
√<
]	and		let	𝑎 = =

@(((1=)
, for 

the remaining i = 2 to n-1 iterations,  let 𝛼' 	be	a	row	vector	with	𝑖	columns	of	𝑎, 𝛽 = −𝑛	𝑎, 𝑈'1= = {
𝑈' 0
𝛼' 𝛽|. Then, 
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the set of sigma points, Σ can be determined as Σ = M+ ~(𝑛 + 1)𝑃' 	𝑈(. Note that each column of Σ is a sigma point 
where ∑ 𝑤' = 1(1=

'A= , ∑ 𝑤'(1=
'A= 𝜎', = 𝑚, and ∑ 𝑤'(𝜎' −𝑚)(𝜎' −𝑚)B = 𝑃(1=

'A= . Each sigma point will be used to model 
𝑤!' 	and	𝑤"' 	as shown in Eqs. (9-10). 

 

 
Figure 5. Wind Fields at Dallas/Fort Worth, TX  

 Pontryagin’s Minimum Principle Validation of Unscented Control Solution 
The unscented optimal control problem formulated in Section IV.A. is solved using DIDO© with three sigma 

points  (n=3) for modeling the random distribution of Easterly and Northerly wind components. Two unscented 
guidance solutions (j=2) are solved for the six stages (m=6) of formulation. The current strategy for the segmentation 
of trip, which determines m, based on the aircraft heading changes along the deterministic wind-optimal trajectory. 
The uncertain initial positions at each stage are modeled based on the magnitude deviation at the previous stage due 
to wind uncertainties. A minimum number of two sigma values are needed to model the uncertain initial position 
distribution at each stage based on the magnitude deviation.  In general, Monte Carlo simulations are incorporated 
into each stage for estimation of the distribution of trajectory states at the endpoint for determining the sigma values 
used as the initial conditions for the subsequent optimal control problems.   

The optimal guidance is developed for aircraft during cruise.  By assuming that 𝛾̇ = 0, 𝛾 = 0, and ℎ̇ = 0, the 
aircraft dynamical equations on a horizontal plane are 𝑥̇ = 𝑉𝑐𝑜𝑠𝜓 + 𝑤*, and 𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 + 𝑤C.  Given	𝛾̇ = 0	and	𝛾 =
0, 𝛾̇ = D-./E5FG-./H

F,
⟹ 𝐿 = FG

-./E
 . The dynamical equation for aircraft heading becomes 𝜓̇ = G	%)(E

,
, and the aircraft 

velocity is simplified and governed by 𝑉̇ = 𝑎. The states are 𝑥, 𝑦, 𝜓, 𝑉 and the available controls are 𝜇	and		𝑎.  The 
dynamical equations for the states are further scaled to enhance performance of the optimal control solver DIDO© . 
Then, the optimal control problems are solved with terminal constraints specified in the Cartesian coordinates obtained 
from transformation of the geodetic systems. Note that the unscented guidance for aircraft speed and heading is 
obtained through the optimized controls of aircraft acceleration and banking angle. In this example, the maximum 
aircraft acceleration is set to one gravitational acceleration and the bank angle ranges between -30 degree to 30 degree. 
The cruise speed is allowed to vary between 80 knots to 120 knots and with 360 degree heading changes.  Figure 6a 
plots the x and y states for the entire trip using the unscented guidance and the sigma values. 
 Basic validation is conducted for optimality of the unscented optimal solution by checking the necessary conditions 
of Pontryagin’s Minimum Principle. Let the Hamiltonian 𝐻(𝜆, 𝑋, 𝑈, 𝑡) = 𝜆B𝑓(𝑋, 𝑈, 𝑡), where 𝜆 is the convectors, X 
define the state space, i.e. 𝑥, 𝑦, 𝜓, and	𝑉;  and the selected controls U are 𝜇	and	𝑉 for this problem, that implies 
𝐻(𝜆, 𝑋, 𝑈, 𝑡) = ∑ [𝜆*&

B (𝑉𝑐𝑜𝑠𝜓 + 𝑤*&)
(AI
'A= + 𝜆C&

B (𝑉𝑠𝑖𝑛𝜓 + 𝑤C&)] + 𝜆0
G	%)(E
,

+ 𝜆,𝑎 for all i, the co-states equations are 

−𝜆̇*& =
JK
J*&

= 0, −𝜆̇C& =
JK
JC&

= 0.	They are constant and readily verifiable as shown in Fig. 6(b) that 𝜆*) = 𝜆C)	, on 

the first row, 	and	𝜆*& , 𝜆C&	𝑖 = 2,3 on the second and third row, respectively.   However, the co-state equations −𝜆̇0 =
JK
J0
= ∑ (−𝜆*&

B 𝑉𝑠𝑖𝑛𝜓(AI
'A= + 𝜆C&

B 𝑉𝑐𝑜𝑠𝜓) − 𝜆̇, =
JK
J,
= ∑ (−𝜆*&

B 𝑐𝑜𝑠𝜓(AI
'A= + 𝜆C&

B 𝑉𝑠𝑖𝑛𝜓) − 𝜆0
G	%)(E
,+

 do not provide useful 
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information for verification. The control Hamiltonian and  Hamiltonian value condition are JK
JL
= 0		and	ℋE@𝑡$J =

− JM
J%!

= −1,  that are verified as shown in Figure 6(c). 

 

 
(a)                                                         (b)          (c)                                          

Figure 6. (a) Trajectory states x and y, (b) co-states 𝝀𝒙𝒊 , 𝝀𝒚𝒊	𝒊 = 𝟏, 𝟐, 𝟑, and (c) the Hamiltonian 

V. Monte Carlo Simulations of Unscented Optimal Guidance 
 This section assesses the performance of the 4-d trajectories produced by Monte Carlo simulations of unscented 
optimal guidance in the presence of various realizations of wind fields. Figure 6 depicts one thousand aircraft 
trajectories that are generated by Monte Carlo simulations of the unscented optimal guidance solved for the problem 
formulation with six stages (m=6) and one initial condition (j=1).  
 

          
Figure 6. Unscented Wind-optimal  Trajectories                              Figure 7. End-point Errors 

  
 The blue dots in Figure 7 represent the lateral perturbations of the trajectories at the destination. In comparison to 
the performance of unscented guidance, four optimal control problems are solved using DIDO©; each assumes a 
deterministic wind vector chosen arbitrarily.   A thousand wind-optimal trajectories are generated in the Monte Carlo 
simulations for each of the four time-optimal solutions as the guidance for aircraft speed and heading. The lateral 
perturbations of the four sets of trajectories at the destination are plotted in cyan, yellow, black, and magenta dots in 
Figure 7. The unscented optimal guidance produces the smallest endpoint errors. These results warrant further 
exploration of the open-loop control concept for designing safe guidance for UAM aircraft without making any 
assumptions about aircraft navigation performance or in GPS-denied environments in the presence of uncertain wind 
fields. 
 Figure 8(a) and 8(b) depict two sets of aircraft trajectories. Each set contains a Monte Carlo simulation of one 
thousand trajectories using one of the two unscented guidance commands computed for the formulation that has six 
stages (m=6) and two initial conditions (j=2) used for modeling of uncertain initial conditions at each stage. The blue 
and magenta dots in Figure 8(c) illustrate possible aircraft positions at the end of each stage i.e. waypoint, respectively. 
Note that the two sets of unscented trajectories are the same for the first stage given known deterministic origin, and 
differ at each subsequent stage with respect to the two possible unscented guidance trajectories. In general, these sets 
of the trajectories can be fused to estimate an upper bound on the required airspace volume for UAM operations 
without an update on aircraft position along the route for multiple aircraft, each adopting its own control solution. The 
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potential unscented commands can provide control insights for determining the operational ranges of aircraft speed, 
heading, and their rates of change for each airspace region given the probability of wind uncertainties. 

 

     
                                                   (a)                                              (b)                                          (c) 

Figure 8. Unscented Wind-optimal Trajectory Sets and Aircraft Positions at each Waypoints   
 

         
    (a)                                                                                          (b) 

Figure 9. Distribution of aircraft spatial perturbations (a) and temporal variations (b) at each Waypoints 

 The box plots in Figure 9(a) compare the spatial perturbation at the end of each stage (i.e. waypoint) for the two 
unscented commands. The track distance from the origin to the first waypoint is 11.1mi, while the mean aircraft 
distance deviated away from this waypoint is 323ft for the wind-optimal trajectory set following each unscented 
guidance. Note that the unscented guidance used from the origin to the first waypoint is the same, because the position 
of the origin is deterministic.  The deviation of the simulated aircraft trajectories is caused by the discrepancies of 
wind vectors used to solve the control guidance and those used in the Monte-Carlo simulations. The deviation grows 
with distance away from the origin without the updates of aircraft position and the recomputed control commands. 
This scenario represents the application of pre-computed open-loop control solutions to estimate required horizontal 
spacing for aircraft operations without knowing the navigation system’s performance. In this scenario, a UAM corridor 
with a width of 1,418 feet, which equals two times the mean (i.e. 323ft) with two standard deviation (i.e. 193ft) will 
ensure aircraft operations lie within the corridor or volume with 95% probability without the need for navigation or 
control updates from the origin to the first waypoint. The width of corridors between the subsequent waypoints can 
be estimated similarly for each of the adopted unscented guidance. Note that these trajectories are simulated from the 
origin to the destination (i.e. the sixth waypoint) without re-computation of controls using any intermittent position 
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update. The width of each corridor segment increases with the distance of waypoints from the origin when including 
all the outliers, but the deviation of majority 95% of aircraft trajectories varies for each segment since the unscented 
controls are optimized with constraints using the sigma values of modeled wind distribution for each stage. In addition, 
the trajectory perturbations also depend on the selected unscented guidance each optimized with a different set of 
initial aircraft position predicted at each intermediate waypoint, starting from the second waypoint. The second 
unscented guidance among the two yields the least amount of trajectory deviation that leads to a corridor with smaller 
width.  These data can be checked with pre-determined constraints and included in the feedback loop in the proposed 
framework to further enhance solutions (i.e. reduce corridor width) and inform requirements of separation with 
Communications, Navigation and Surveillance Systems (CNS) capabilities.  

The box plots in Figure 9(b) compare the temporal variation at the end of each waypoint for the two sets of 
trajectories. The mean travel time from the origin to the first waypoint is 294sec with standard deviation of 2sec for 
each wind-optimal trajectory set. Note that travel time is minimized for each stage but still varies with actual wind 
fields used in the Monte Carlo simulation. The mean and standard deviation for the second waypoint is (348sec, 2sec) 
and (350sec, 1sec), respectively, for the two trajectory sets. The standard deviation of the arrival times at the 
subsequent waypoints does not increase in ascending order, and remains similar for the two unscented optimal 
guidance. In this example, the mean and standard deviation from the starting point to the last waypoint is (697sec, 
2sec) and (696sec, 3sec) for these two sets of unscented trajectories. The spatial and temporal variations of the 
trajectories can be combined to define a 4-d trajectory envelope such that the aircraft operations are guaranteed to stay 
within even without real-time position update and in the presence of modeled wind uncertainties while overall aircraft 
travel time is minimized. For example, a rectangular airspace volume with 11.1mi in length and 1,418ft in width span 
between ti and (ti+ 298) in time can be reserved ahead of time to ensure the actual UAM aircraft fly inside the bounded 
envelope between the starting position and the first waypoint with guarantee for the predicted range of wind variations. 
Figure 10 illustrates the concept of a UAM corridor and the 4-d trajectory volume with the design parameters.       
 

 
Figure 10. Wind-optimal UAM corridor and the 4-d trajectory volume with the design parameters 

 
Note that the simulation results will vary with actual UAM vehicle aerodynamic and performance parameters, 

operation requirements, and wind variations. The current results are within the range of lateral separation minima, 
which is 4,000ft19,20 between corridors for larger UAS (55-1320lb) and 1mi1 for UAM vehicles. This study developed 
a methodology that incorporates uncertain wind conditions and static obstacle avoidance to define airspace corridors 
and 4d trajectory-based operation volumes for UAM aircraft.  Airspace constraints such as traffic patterns in the area 
along with aircraft performance parameters can be readily incorporated into the framework. Future research will 
incorporate high-fidelity vehicle models and simulations, validate results with actual vehicle data, and utilize the 
proposed framework to develop a prior and reusable UAM guidance database to support NASA’s UAM research 
portfolio. 

VI. Concluding Remarks  
This study proposes a strategic trajectory planning framework capable of supporting the development of UAM 

traffic networks and the optimization of UAM aircraft trajectories for increasing robustness of UAM operations in the 
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presence of various sources of uncertainty.  The framework represents a trajectory planning framework based on an 
unscented optimal guidance approach to support the concept development of UAM traffic network and optimization 
of UAM aircraft trajectories that are robust to uncertain wind fields. The preliminary framework development is done 
using Swift 2 on Xcode 7 and utilizes Apple’s Mapkit API for the integration of potential UAM routing networks, 
aviation constraints, deterministic weather conditions, and connections to ground transportation networks to create a 
set of feasible time-optimal routes door to door. An unscented transformation is implemented for the selection of a set 
of minimum number of sigma points that model probability distribution of an uncertain wind field. A set of multi-
stage unscented optimal control problems formulated with uncertain initial aircraft positions at subsequent stages is 
solved using DIDO©, and the optimal solution is validated for optimality by checking the necessary conditions of 
Pontryagin’s Minimum Principle. Initial assessment based on trajectory perturbations of UAM aircraft in various wind 
fields produced by Monte Carlo simulations shows that the unscented guidance commands produced the smallest end-
point errors when compared to those of deterministic optimal control solutions.  An example of wind-optimal UAM 
corridor and the associated trajectory-based operation volume is created utilizing the 4-d trajectories produced by 
Monte Carlo simulations of unscented optimal guidance in the presence of various realizations of wind fields for 
preliminary assessment of required aircraft separation minima without knowledge of aircraft navigation performance. 
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