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NASA, in partnership with the Federal Aviation Administration and commercial airlines, deployed thelntegrated
Arrival, Departure, and Surface (IADS) traffic management system atCharlotte Douglas International Airport (CLT)
in 2017for field evaluation. The systemfeaturesnew capabilities of data exchange and integration, collaborative
surface metering and schedulingwhich hasdemonstrated operational benefits ofeducing delaytime and fuel
consumption General Aviation flights, however,are not currently included in the surface meteringprograms because
of their different operational procedures and lack of reliable predictabilityin departure time. Thus, their impact on the
system performance ishot well understood This paper presentsa study of the impact of General Aviation traffic at
CLT using fast-time simulations.

[. Introduction

In the United States there are more tB8A,000General Aviation (GA) icraft in active use (including Part 91 and Part 135
operations) that are estimated to log more &@million flight hours annually1]. They are used for a variety of purposeduding
personal, business, amstruction The number and proportion of GA operations varies by airpo&harlotte Douglas International
Airport (CLT), for instancean average d30 departure an80arrivalflights per day account f@about 46 of all airport operations

The numbers are based on a thmeanth operation data set from July to December in 2@49a comparison, the daily numbeit Dallas Love
Field Airport (DAL) areover 60each andaccountdor 20% of airportoperationsWhereaghe overall proportion of GA operations at
CLT is small, the potential exists for some of these GA flights to impact surface operations. For example, they may tbhmpete w
other air trafficincludingcommercial andargo flights, for airport resourcéike runways. GA flights have less predictable departure
schedules than commercial operations, ateCLT,do not have communication with the ramp tower before paggenting a unique
challenge fotrajectorybasedsuiface operations.

A. Integrated Arrival, Departure, and Surface (IADS) Traffic Management System

In September of 2017, NASA, in closellaboratiorwith the Federal Aviation Administration (FAA) and industry, deployed the
Integrated Arrival, Departure, and Surface (IADS) traffic management systehT as part of Airspace Technology Demonstration

2 (ATD-2) projectfor a threeyear field evaluationThe IADS system has demonstrated operational benefits through its capabilities of
data exchange and integration, collaborative surface metering, departure scheduling for overhead stream insertitimend real
metricsreporting[2]. The objectivef the IADS systenis to balance demand and capacity to achieve more efficient traffic movement
on the surface and overhead stréasertion
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Surface metering is used whémetpredicted demand exceeds the airport capdaifpg departure bankdHolding flights athe gate
transfersexcess taxi timérom the departuraunwayqueueback to the gateprior to engine startAs of March 31, 2020, it is
estimatedh total 0f3,83 hours of engine run time reduction thesultedn 5,075,981poundsof fuel savings and5,634,022 pounds
of COz emissionreduction[3].

Surface scheduling and metering is enabled by the availability and quality of flight readiness time. Major airlinedipgriictpa
ATD-2 field evaluation provide an Earliest éBfock Time (EOBT) for each departure flight. The EOBT represents thebémate

of a flightods earliest pushback time. A good g atadchranwagkdOBT
hence, achieve reliable scheduling to keep the surface less congested while maintaining overall airporttthktargnmith other

data inputs, the surface scheduler uses the EOBdretlict takeoff times of departure fligrdad calculate recommended gate holds.
Gate hold advisories are communicated to Ramp Control through the2/Rdmp Traffic Console (RTC) ietface.

Airlines are motivated to improve the accuracy of EOBT data for the benefit of reduced excess taxi time and fuel saxiads achi
through surface metering. A preliminary study of EOBT quality impact on surface mgtgfsjgshowsthatthe EOBT accuracy has
a direct impact on thiengthof the departuregate hold timexssignedy ATD-2 6sarfacescheduler.

To date, GA operations have not been included in surface metering at CLiea3poas that, unlike commercidlightsat CL T 6 s
main ramppilots departing fronthe GA ramp areao not contact thRamp Tower prior to taxiAt the main rampthe Ramp

Controller communicategate hold advisorie®r surface meterindn contrastGA f | i gdomnsudication is witihe Ground
Controlera t t h eAirgerATAaffis Control Tower (ATCT) Other challenge® GA operationsncludelesspredictalle departure
timesandthe ability to communicatep-to-date readinessnd inteninformation to theATD-2 scheduler ExcludingGA flights

before they entethe Airport Movement Area (AMA)rom surface metering and schedulimgyy have gotential impact on the
efficiency ofairportoperationghat has not beenvestigated

B. Mobile App Technology Enables TweWay Communication with GA Operations

A mechanismis needed to enable twwgay communicabn between GA operations atite ATD-2 scheduleprior to their entryinto
the AMA . In response to that neethe MITRE Corporatiorhasdevelopeda prototypeMobile Application (App)to enablegwo-way
information sharingpetween GApilotsandNASA6s | ADS traf fi[@[7flmanagement system

MITRE has conducted a field test of their prototype Mobile App technology at CLTawittall group of Corporate Flight Operators.

Using a mobile device, pilots submit a ready timéhtATD-2 scheduler Thi s ready ti metoTarfelTr mdo

RTT, represents the pilotds bestofthaGA hmpcatea anchbe ceady te toptact Gronrel y
Control for their taxi clearande enter the AMAThe RTT submitted by GA pilots is analogous to the EOBT submitted by airlines
for departure flights at the main rampprovides ATC and thATD-2 schediler with more accurate and-tip-date departure
readiness informationin return, the GA pilot receives fligisipecific schedule informatiogenerated by the ATR schedulersuch
asassigned runway arekpected takeotime, and information about traéf management restrictioms place Fig. 1 shows an
example timeline of how a GA pilot may incorporatng the Mobile App to submit readiness infotimainto their predeparture
procedures.

As part of a field test, a small group of GA pilots use MITRE’s prototype Mobile App to
submit a Ready-to-Taxi Time (RTT). The RTT is an estimate of when they will arrive at
the edge of the GA Ramp area and be ready to contact Ground Control.
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Fig. 1 Example timeline showing how aCorporate GA pilot may incorporate the Mobile App into their pre-departure procedures.

M| T R Eefdslemonstratiotnas shown tha#obile App technology can enable tweay communication flow between GA operators
andsurface schedulersloweverthe conmunication procedureandrequirementselated tosurfacemeteringfor GA flights have not
yet been exploredilthoughnotinvestigatedn this field test, Mobile Apgechnology has the potential to support the inclusion of GA
flights in surface metering. For example, Mobile App technology might be uggdwiole metering hold advisories to GA pilots.
Althoughthis research has includedmarily business aviation (BA) flights, other GA aircraft, cargod military flights have the
same communication limitation and similar impacts on airport performartoey areincluded in theGA flights in this study.

C. ResearchObjective

Becausef the GA flightbunique operatioal challengestheir impact on surface operaticasCLT, particularlyduringsurface
metering has not been fully understodflesearclyuestions include: 1) wheth&A flights haveanunintended advantage over
commercial aiiihe flightswhich adhere to metering advisories at the gades2) within a traffic bankwhat GA traffic concentration
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affects the airline flights the most? Since the grand scheme of surface metgrémgls oquality of predictability for performance,
guestions exist arounsthether includingsA flights with RTT data in surface meterimgightimproveoverall runway throughput,
taxi times delays andfuel consumption

Note thatthe conceptour f ace met eobingsigapéikdl 89 c o mmeésthatiheaicraftidhelgadtt s ¢
the gate, prior to push back. Hawvould be applied in GA operations has yet to be explored. It may mean that a GA flight holds
somewhere in the GAramp area,andpossl y, del ays engine start. However, for t
applied generally to GA operations to mean they werellhslod
in GA operations are beyonké scope of this simulation.

This papeinvestigates the impact of GA flights the efficiency ofairportoperationsisingl ADS 6 s s ur fp@gramsatme t er i
CLT. The study usemsttime simulations and explaséwo setsof variables. The first is theAStraffic demand that is quantified by

the number of GA flights in the overall flight traffat the airporaind their flight timesluringtraffic peak hours. The otheariableis

the GA flight readiness information, RTT, including provision and accuracy.

The paper is organized &slows: Sectionll describes the simulation environment including system setup, traffic scenarios, metrics
and measurementandthe RTT model devepment. Sectiofll presents theimulation resultsising thegivenscenarios and RTT
model. The paper concludes with a summary in Set#on

II. Simulation environment description
A. Airport

The simulationsised the CLT airportin a southsimultaneoudraffic flow configuration Fig. 2 shows the airport layoat CLT.
While Runwayl8R is for arrival onlyRunways 18C and 18L adeialuserunways for both departures and arrivialshis runway
configuration A Fixed Base OperatoFBO), where some GA/BA passengers meet their pisdbcated at the General Aviation
Ramp on theastside of the airportshownin thegreen boxn Fig. 2.
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B. Simulation setup

Thesimulations in this paperse the same configuratitimat was built and validated the previousstudyabout the impact of EOBT
uncertainty{4] with the addition ofa newly developed RTT modfar GA flights, as shownn Fig.3. NASAO6 s Operatioasc e
Simulatorand Scheduler (SOS)] wasused forthesesimulations SOSSconnectdo the ATD-2 TacticalSurfaceScheduler through
the Surface ModelerThe traffic scenarios are the inputs to the simulatmtdefinethe GA traffic level and demnddensity, as well
as scheduled airline flightsThe EOBT Modeprovidesthe EOBT updates faheairline aircraft in the maiterminals The RTT
Model provides the estimated readiness times and acctoa@A flights. The Surface Modelarsed for fastime simulationss
adapted from ATE2 6 s SMaddl used & reatime field demonstratigrwhichis used for data exchanges and integratione of
thecoreconceptds to groupaircraftby their priorities and predictabilityf flight readinessn scheduling9]. When the predicted
traffic demand exceeds the runway capacity and the predicted excess taxi time is@ieseé tareshold, surface meteriag
triggered.The TacticalSurfaceScheduler schedules flights frdmgh-priority group tolow-priority group. In the simulationgoth
airline departuresitgaesthat provideEOBT updatesand GA aircrafprovidingan RTT estimateat stancare placed ithe samehigh-
priority group. The GA aircraftwith noRTT estimatere placed ithelow-priority groupfor scheduling priority and are exempt
from surface metering, and, therefosgart taxiing fronthe parking stand whenever they are reasyulatingthe current GA ramp
operation withouMobile Appcommunication.

C. Simulation configurations

In this study, fousimulation configuratiomgroupsare considered. They adesignedo sypport twosetsof simulation variablegas
described in the research objectivéhie baseline traffic scenario for glloupsis derived fromactual operation data from Bank 2

traffic at CLT onFebruaryl4, 2018.There is a total of nine traffic banks Jadit CLT. Bank 2 is one of the busiest banks in the
morning traffic.The typical traffic pattern in Banki2 thatthe departure demand pediefore thearrival demandstarts to build up



In this baseline scenarithereare85 airline departures and &drline arrivals respectively.Of the 85 departures, 48ke offfrom
Runway 18C and 4fom 18L, respectively Of the 83 arrivals, 5, 3@nd 48 land on Runways 18C, 18L and 18R, respectively.

1. Simulation Group 1GA flight requestistribution

Thepurpose of théirst simulationgroupwasto investigateheimpact of GA flight$requested departure timdéstribution Four
different departure time distribution patterns were examiwét,each scenario having ten GA flighf§ uniformly distributed over
the bank, 2foncentrated in thieginning of the bank, oncentrated in thmiddle of the bank, and 4pncentrated in thend of the
bank. GS flights in this simulation group did not provide RTTs and so were exempt for sudteenigrLlt wasexpectedhat GA
traffic demand at the peak time, i.e., case 3, would havartestimpact on thairportperformancen a surface metering situation

2. Simulation Group 2Number of GA flights

The secondimulationgroupincreaseshe number of GA flightsiniformly distributedn the banko examineanyadverseémpact to
airline flights, such agncrease of taxi timear gate hold timeévhen metering is onAs with Group 1, GA flights did not provide
RTTs.

3. Simulation Graip 3:RTT percentage

In the thirdsimulation groupa certainpercentage oBA flights were assumed forovide RTT with similaraccuracy as observed in
MITRE data described in section Ehe percentage of GA flights providing RTTs was varied for ten tmlfodistributed GA flights.
Those GA flights submitting RTTareassignedhe same scheduling priority as the airline fligthat haveEOBTsat mainterminals
andare expected to comply with any assigned metering hold at the parking. stéwedserfornance(e.g., taxi timé of the GA flights
will be examined together with airline flights.

4. Simulation Group 4RTT accuracy

In the lastsimulation groupall ten uniformly distributedsA flights wereassumed tprovideRTTswith varying accuracyThe RTT
model generates the various accuracy levels used in the simuldfioe®xpectatiomasthat as the RTT accuracy improvesssi
time reduction will occur for bothirline and GA flights during surface metering

D. Performance metrics

To analyze the impact on tledficiency ofairportoperationsa set of performance metrizereconsidered They include gate hold
time of metered GA and airline flights, time series of gate hold time, taxi out time of GA and airline filgatseries of taxi out
time, and runway throughput.

E. RTT model

In this section, we describe how the RTT accuracy model is developedadstgdriven approach. For thigrk, we have used the

data collected bMITRE for GA flights that departeffom CLT between October 20, 2017 and Septemberth72019. The

proposed RTT model is a combination of two probabilistic quantities: 1) the timing of the updates up to the Actual RTTAARTT)

2) the accuracy of the updated RTTs as a function of the timingpropesed statistical model that generates RTT accuracy is used in
the fasttime simulation for evaluating the impact of RTT accuracy on airport surface operations.

1. RTT Data Analysis

GA/BA flight datacollected by MITREwvasused for theRTT data analysisOut of 1,656 GA flightsn this data seB801 flights
submittedat least on®TT and hadAMA entry timesfrom Airport Surface Detection Equipment, Model X (ASD&. The AMA-
entry time r epr ActualRTIT shattishtle tisthey ariiveédagtthte édge of the GA ramp arethis analysis, two
main variables were analyzed:RJ T accuracy, and ZRTT update interval. ThRTT accuracy is defined as the difference between
theARTT andp i | o tRI BestimataTheRTT update iterval represents theme dfference between twdRTT updates of the
same flight, or between the |&TT update time andRTT.
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Fig. 4 shows theRTT accuracy changes in the lookahead time wind®@®@ min, 0 min] as timapproaches th&RTT. The plot

representthe RTTestimate valuesubmitted by the pilstwithin the lookahead time window. This plot shows that in general, the
RTT errors tend to decase to negative values as the time progresgash impliesthat theRTT prediction becomes more



conservative, as it approach®RTT. The nmjority of the GA flights (85%3%ubmittectheir RTTs once(dark red markejs
approximately 10% GA flightsubmittal two RTT updates (red colprand about 5%rovidedmore thartwo RTT updates.

2.  RTT Model Development

For the RTT model development, a tstep approach wassed, which was introduced in the EOBT modelinfftjn First, the RTT
update times of each fligitere modeledvithin a[-30 min, 0 min] lookaheadne window as the time approach®RTT. Then, the
RTT accuracywas modelledt each update time calculated in the first stdy® modeproducel RTT accuracy distribution similar to
the actual RTT error distribution using the probability distributionsiges’/by commercial software libraries like Apache Commons
Math packag¢l0] and MATLAB [11].
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In the firststep the following two variablesvere consideredL) the number of RTT updates per flight (referred to as PD1), and 2) the
time distance from the reference time (i.e., ARTT) to the time when the RTT value is updated (referred to as P28 wp&DImMIn,

0 min] lookahead time windowl'o model the number of times the RTTs are updated for a single flighbgnormal probability
distribution, which has two parametegsapdd), was selectedince itbestmatched with the actudhata among various distributions
tested The lognormal distribution is a continuous probability distribution; hence, the values were roundedlts#sénteger for
computing the number of RTT updates

Forthe RTTupdate time dtance modelinghe Weibull distribution was selectedn the RTT model, the time distance between two
updates can be modell ed as a 6si zed i rhetognormal disgibutioa. TheWeileull n u
distribution, whid has only two parameters (A and B), showed the best fit to the RTT data samples among various continuous
distributions available ithe Apache Commons Math package and MATLAB. From the actual data analysis, probability distributions
of these two valuewere fit, asshownin Figs 5 and 6. The histogram bar graphs (green) and regression curves (red) represent the
actual data and the modelled distributions, respectively. The RTT updateXiyfes.each flight can be modelled using the values
randomly samied from these two distributions aeapressedh Eq.(1).

Xk=-random(PD2),k = 1, 2, é, ra@dom(PD1)
In the second step, a linear regression ma@esl developedas expresseith Eq.(2), to fit the average accuracy trend along the

lookahead time. In (2x andy represent the lookahead time with respe¢h&ARTT time and the mean RTT error (ARIRTT) at
X, respectively, with the regression coefficiemtsandca.

y=C+cC1*X (2)
Next, a sequence of probability distributiamas fittedto the actual RTT error data (referred to as PDB logistic probability
distribution model was the closest to the actual RTT error distribution providibe lagtual dataFig. 7 showshe histogramof
actual RTT accuracyalues, and the red line in the chart shows the selected Logistic probability distriluidel. The Kullback-
Leiblar divergence (also calledlative entropy)12] was usedo measurénow muchone probability distributiomvasdifferent from
thereference probability distribution. The Kullbatkibler divergencef the selected model with respect to thual distribution
was0.4064 thelowest or the besffit of all candidate models.

The RTT accuracyy, can be modelled usirigg. (3):
Y = o+ c1 * Xk + random(PD3) 3
whereXk is the RTT update time from the previous madekq.(1).
From the data analysis using the actual RTT data at CLT, the following parametersalculateéh TABLE I.
Table IParameters used in the RTT Model

RTT Model Probability Distribution or Regression Model Parameters
. PD1: Lognormal m=0.114848s = 0.303685
RTT update time PD2: Weibull A= 1135998 = 1.54735
PD3: Logistic m=-0,306186s = 2.27737

RTT accuracy

Linear Regression co=-2.538, @a=-0.1908




3. RTTModelValidation

With the given parameters irallel, the RTT valuesvere generateffom the proposed RTT model for model validation. The
scatter plots ifrigs 8 and 9show the actual RTT error and the generated Bifdrs using the model proposéd Eq.(3),
respectivelyalong thdookahead time window30 min, 0 min] as the timapproacheARTT. TheRTT values from th&kTT
accuracymodel cannot be exactly the samahasactuaRTTsfor an individualGA flight, but it is shown that the distributions are
visually quite similatand the KullbacK eibler divergence is small (0.0389).
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I1l.  Simulation Results

This section pres#s the simulation results aashalyse®f the foursimulationgroups During Bank 2at CLT, almost all GA flights
use theeastrunway(18L/36R) which is closgtto the GAramp areas In the simulationsall GA flights were assigned to Runway
18L. The results showin the analysisire forRunway 18L only.

A. Simulation Group 1: GA flight request distribution

In this simulationgroup ten GA flights wereadded to the baseline scenarichis number reflects the Bank 2 ngassenger flight
statistical analysisTheirflight readytimes from the GA rampvere distributed in the b&rin four ways

1 Case luniformly distributed ovethe whole bank
I Case 2in the beginning80 minutes of the bank
1 Case 3in the middIe30 minutesof the bankand
1 Case 4in the last30 minutes of the bank

Twenty Monte Carlo simulation runs were conducted for each ¢ége.10 and 1$how the average total gate hold tgvand the
average total taxout times respectivelypverthetwenty simulation runsError barandicate95% confidegelevel. Since the GA
flights provided no RTTsn this group, theyverenot subject to meterin@nd zero gate hold time)n Case 2wherethe GA traffic
concentratiorwasin the beginning of the bankirline flightshadlongergate hold and taxaut times ratherthanCase 3 as originally
expected It reveals thathe GA traffic was competing with the airline traffic for the runway atidginning of the bank
Additionally, becaus¢he GA aircrafimmediately started taxiingito the AMA , afterb ei ng desi gnandjemtdaas fr e
departure queue et, theybecaméhigher priorityin the schedulethan the airline aircraft dhe gate This resulted idongergate
holdsand taxiouttimesfor the airline flights. Case 3wherethe GA traffic concentrationvas inthe middle of the bank, had the
secondargestimpact to airline flights. This is becauakhough the airline departure traffic begamézreasgherewas sufficient
demandon this dualuserunwaydue totheinboundarrivals Case 4, where the GA traffic was in the end of the Hzakthe least
impact on the airline flightsAlso, in Case 4the total GA taxiout time increased compared to Ga@and3. The probableeason
for the increasén taxi out timeis that the arrival traffionthe dualuse runway at the end of the bank caused the GA aircratiito
longerfor the runwayuse
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Fig. 10 Total gate hold time of group 1 Fig. 11 Total taxi out time of group 1



Figs 12 and 1®lot the time series of the gdteldtime and taxiout time, respectivelyThe time series is made of a sequence of
vertical bars in fiveminute bins.In the gate hold timseries shown in Fig 12he left bars represent the average total gate hold times
of aircraft whose readiness time lies in those bins, and the right bars represent the average total gate hold airgafineoant!

GA aircraft are ggarated and stacked. In this simulation gr@bf aircraft wereat the parking stand and can leave freelyraotd
subject to any holds and so only airline aircraft have hold tamdsvisible bar heightas shown in Fig. 1Zor taxiout timeshown in

t o t-béotk timedies in that bih. Atrlineraed GAf  t

Figl3, each bar shows the
aircraft taxiout times are stacked in the plot.
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In the time series fo€ase 2surface meteringf the airline flightsstarted early around 20 minutes into the hamkl sahe GAflights
6pushedd tnmetringhold. Casen3e f |
shows the similar metering start tineeCase 1, buhighermetering timebarsbecause of the GA traffic concentratiorthe middleof
the bank Case 4 shows the least impact on airline aircraft meterich isconsistentvith the total numbers iRig. 11
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Fig. 15 Cumulative runway throughput of group 1

Figs 14 and 1Show the runway throughput metrié. departure runway operation is registereéthieoff and an arrivaunway
operation occurs danding. The stacked bar charig-ig. 14measure the average numbers of runway operations #mfivete bins.
Fig. 15plotsdepict the cumulative operatiofe departurs only to focus on airline and GA departure throughputs. In Case 2, the
bar chart shows the GA aircraft took a sfigant portion of runway takeoff slots in the early part of the bank and pushed airline
departure aircraft to later takegffesulting in takeoff delay of airline aircraft. This is also observed in the cumulative throughput
plotsin Fig. 15where the aline departurdin the middle plotpf Case 2 exhibited lower throughput up to about 70 mirinteshe
simulation time compared theother cases. A similar situation can be seen in Case 3, in which the GA aircraft coiocentthe
middle of the bank causéalwer airline flight throughput from 60 to Bdminutes. The highest runway throyogih in five-minute bins

he

g



happened in Cases 2 and 3, at 60 minut®esthesimulation time. It is about 5.5 flight®mbining departures aradrivals which
translate t@naverageof 55 seconds of separation tiniedicating the runway was saturated then

Theresultsin this simulation groughow tha GA traffic concentrated in the beginning 30 minutes of thk had the largestimpact
onairline flights, in metering hold time, taxi out time, and throughpDie reason is that airline departure demand starts early in the
bank,which is theroverlapped by GA traffic. Another reaslkes in the unpredictability of GA operation, whiténds tacause
longergateholds from the surfacescheduhg algorithmandlongertaxi-out times for airline aircraft

B. Simulation Group 2: Number of GA flights

In thisgroup six different numbersf GA flights wereaddedo the baseline scenari@.heir readiness timperturbationvasevenly
distributedover theentiretraffic bank. Table | shows the numbers of GA flights @ach ofthe six casesTwentysimulation runs

were conducted for each cas®tatistically, Case 6f this groupis the sara as Case @&f Simulation Group 1

Table 1l Number of GA flights
Case No 1 2 3 4 5 6
Number of GA Flights 0 2 4 6 8 10

Figs 16 and 18howthe average total gate hold times and the average totaluttimes, respectively, over the Monte Carlo
simulation runs. Whe@GA traffic increased, the airline flights experiendexdgermeteringhold times, as expected At the same
time, the total taxbut time of the airline flightalsoshowed a increaing trendwith Case 2 as anutlier, which probably was due to
the demandiming of the twoGA flights with respect to the airline flights in th@seline scenarioT he increase of GA traffic and its
less predictability had a negative impact on the airline flights indmtthold and taxiout times or on themetering effectivenedsr
taxi out time reductionThe increased taxi timef GA flights shownin Fig. 17wasdue tothe increasedumber of GA flights.
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Fig. 16 Total gate hold time of group 2 Fig. 17 Total taxi out time of group 2
casel casel
& 60 m—airline Time m—iriine Count Gh & 150 m— irline
5 40| GaTime - cacoumt [4E 5 100 - A
= 20 28 = 50
0 *0 0
0 10 20 30 40 50 60 70 80O 90 100 110 0 10 20 30 40 50 60 70 80 90 100110 120130 140
case2 case2
» 60 6 » 150
240 4t 2100
£ 28 £ 50
0 *0 0
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100110120130 140
case3 case3
60 6 » 150
% a0 4t % 100
£ 23 £ %0 B
0 Lo 0
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100110 120130 140
cased cased
60 6 o 150
a0 4t £100
E 20 253 E 50 B
0 = =0 0
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100 110 120130 140
cased cases
.\ 60 6 w150
,g. 40 4 ‘g ,g. 100
Z20 23 £ 50 m
=0 Lo = 0
10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100 110 120130 140
caseb caseb
. 60 6 » 150
240 4E 2100
€% P 28 g% [T
0 -0 0
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100110 120130 140

Fig. 18 Gate hold time series ofgroup 2 Fig. 19 Taxi out time series ofgroup 2



The time series ajatehold and taxi out times are depictedFigs 18 and 19Vhen the number of GA flights increased gradually, the
meteringstartedearlier. Because the GA traffic was evenly spread across the bamleverthe system was able tandlethe
impactover the bank

The runway throughpuwiomparismsamong the six cases are showirigs 20 and 21The cumulativairline flight throughputsin

the middle grapin Fig. 21 showdelayed throughputasthe number oGA flights increased This is consistent with the combination
of the increasedatehold time and taxi out timgeen earér. It impliestakeoffdelayof the airline flights which can be seeim the

time series of bar chartssound 10Gninutesas more airline flights were pushtxtake offlate
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Fig. 20 Runway throughput chart of group 2 Fig. 21 Cumulative runway throughput of group 2

Overall in thissimulationgroup, the simulation results sholat the increase of GA traffic affected the airline flightth earlier
metering startimes higherholdtimes taxi out timesandtakeoffdelays. In particular, because of the less predictability of GA traffic
demand, the effectivenessafrface meteringp mitigate taxi out times waaffectednegatively

C. Simulation Group 3: Percentage of GAflights having RTTs

TheRTT model was introduced Simulation GrougB andprovided the RTT values for Giights prior to departing the parking
stands in the GA hangafhe RTT model was configured to match the accudddlie actual data from MITRETen GA flightshad
their ready times perturbeohiformly over the entire banik the baseline scenaridr'he percentage of the GA flights that prowide
their RTTs were varied in six cases: 0%, 20%, 40%, 60%, 80% and 10090%Idase represents the current operations without
Mobile Applications, whereas the 100% case assuhagsall the GA flights provide controllers with the estinthfeMA entry times
in advance The GA flights which provided RTTwereconsideredn the high priority group in runway schedulirandhad tocomgy
with themetering hold at parking standrorty simulations were run for each ca3éis doubled number dimulationsrunshelped
expandhe statistical sample site achieve goodaccuracy otachtargetpercentage oA flights that provided RTTs
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Fig. 22 Total gate hold time of group 3 Fig. 23 Total taxi out time of group 3

Figs 22 and 23how the average total gate hold times and the average total taxi out times, respddtivel®,shows that tre total
hold times of the GA flightincrease amore GA flightsprovidedRTTs, but theholdtimes of the airline flightshowno statistically
significant difference.This impliesthat the impact othe gatéhold time of airline flightsby GA flights with or without RTTs is



small GA flightsthat submilRTTs compete with airline flight®r slats from thescheduler antiold at parkstard. In contrastthe

GA flights that do noprovide RTTsdirectly affect the airline flights by leavirtge parking stand freelwhen ready Nonetheless, the
overall gate hold timesf both airline and GA flightincreasedvhen more GA flighthad RTTs. In correlation with thimcreasén
metering hold times, the taxi out time chiarFig 23shows adecreasingrend in both airline and GA flightdt indicates thatvhen a

greatempercentage oBA flights submittedRTTs andcompliedwith themeteringtimes the interruption to the metering ecosystem
droppedandbeneftted thetaxi out time reduction

Fig. 24 Gate hold time series ofgroup 3 Fig. 25 Taxi out time series ofgroup 3

The time series bar chaof metering hold and taxi out times are displayeBigs 24 and 25respectively.The metering hold time

charts show that the percentage of GA flights submitting Riild sot accelerate nor delay metering start tilbesause of the same
reasons as described in the total number analysighe gatehold time of airline flightsby GA flights with or without RTTs is small.
The metering hold time distributions of the airlimgholfi|l i ght
count andime is evident as moRTTshad been submittedAt the same time, thaxi-out times of both airline and GA flights
decreasgacross the banlkonsistent with the results in the total numbers.

Fig. 26 Runway throughput chart of group 3 Fig. 27 Cumulative runway throughput of group 3

The runway throughpuredepictedn Figs 26 and 27No obvious differences are foubétween cases in either pldhatindicates

thatthe RTT provision of GA flights caimcreasametering holdime butdecrease taxi otimes of both airline and GA aircraft
helpingmaintaindeparturghroughput.









