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UAYV Trajectory Modeling Using Neural Networks
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Massive small unmanned aerial vehicles are envisioned to operate in the near future.
While there are lots of research problems need to be addressed before dense operations can
happen, trajectory modeling remains as one of the keys to understand and develop policies,
regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The
fidelity requirement of a small unmanned vehicle trajectory model is high because these
vehicles are sensitive to winds due to their small size and low operational altitude. Both
vehicle control systems and dynamic models are needed for trajectory modeling, which
makes the modeling a great challenge, especially considering the fact that manufactures
are not willing to share their control systems. This work proposed to use a neural network
approach for modelling small unmanned vehicle’s trajectory without knowing its control
system and bypassing exhaustive efforts for aerodynamic parameter identification. As a
proof of concept, instead of collecting data from flight tests, this work used the trajectory
data generated by a mathematical vehicle model for training and testing the neural network.
The results showed great promise because the trained neural network can predict 4D
trajectories accurately, and prediction errors were less than 2.0 meters in both temporal
and spatial dimensions.

I. Introduction

A large amount of small Unmanned Aerial Vehicles (sSUAVs) are expected to operate in the uncontrolled
Class G airspace, which is at or below 500 feet Above Ground Level (AGL), where many static and dynamic
constraints exist, such as ground properties and terrain, restricted areas, various wind conditions, manned
aircraft operations, and collision avoidance among sUAVs. How to enable safe, efficient, and massive sUAV
operations at the low altitude airspace remains a great challenge. NASA’s Unmanned aircraft system Traffic
Management (UTM) research initiative»? works on establishing infrastructure and developing policies, re-
quirement, and rules to enable safe and efficient sUAVs’ operations. While there are lots of research problems
need to be addressed, trajectory modeling should serve as the foundation for understanding sUAV operations
and developing requirements and rules for UTM system.

For manned and unmanned large fixed-wing aircraft, where precision requirements are typically at a
nautical-mile level, trajectory errors are dominated by navigation and sensor errors. Despite different con-
troller designs, aircraft control systems are capable of maintaining trajectory deviation at a level that is much
lower than a nautical-mile. Especially for en-route traffic, cross-track trajectory errors caused by winds are
usually negligible and modeling aircraft controllers becomes unnecessary. This approach greatly simplifies
trajectory models for large size fixed-wing aircraft,>? especially when calculating horizontal trajectories.
Horizontal trajectories of large size fixed-wing aircraft are usually constructed from straight lines and turn
arcs, where turn radii are decided based on bank angles and ground speeds.””” The simplified horizontal
trajectory calculation has been widely used in aviation research.’ 1!

While, for sUAV, navigation errors are mitigated through technologies like Differential Global Positioning
System (DGPS),'% 13 trajectory errors caused by wind rise because sUAVs are sensitive to wind due to their
small size and low operational altitude. Different sUAV controllers usually produce different trajectory
responses under the same wind condition and errors and differences are not negligible at the meter-level
precision. Therefore, accurate models of SUAV control systems become as critical as dynamic systems when
assessing and managing safe and efficient UTM operations. In the past, plenty of research!* 17 has been done
from a vehicle designer’s perspective - modeling sUAV’s plant/dynamics through system identification and
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designing control system based on that. However, because manufacturers are usually not willing to share
their control designs as a part of intellectual properties, how to model sUAV trajectory with unknown control
systems becomes a challenging research question. On the other hand, considering the rapidly growing small
UAV market, the low manufacturing cost, and the short length of manufacturing cycle for small UAVs, it
might not be feasible to model a SUAV trajectory following the traditional way in manned aviation, where
manufacturers provide aerodynamics based on their numerous wind tunnel and flight tests in design phases
and trajectory models are usually accurate enough without knowing aircraft’s control systems®. Because of
the associated costs, efforts, and time, sSUAV manufacturers may not conduct enough wind tunnel and flight
tests as their conventional aircraft counterparts. This work proposed to use a neural network approach for
modelling small unmanned vehicle’s trajectory without knowing its control system and bypassing exhaustive
efforts for aerodynamic parameter identification. A neural network based approach is proposed in this
work to model sUAV’s trajectory, where the entire vehicle model including dynamics and control systems is
treated as a black box. As a proof of concept, instead of collecting data from flight tests, this work used the
trajectory data generated by a mathematical vehicle model for training and testing. The neural network is
first trained to learn the vehicle’s responses at multiple conditions with identified features. Once being fully
trained, given current vehicle states, winds, and desired future trajectory, the neural network will be used
to predict the vehicle’s future states at next time step. By repeating this step, a complete 4-D trajectory is
then generated as time progresses.

In this work, Section II describes the method proposed for modeling vehicle dynamics and controls.
Section III presents the experiments conducted for initial testing of the proposed neural network method.
Section IV draws the conclusions.

II. Method

This section presents a generalized small UAV vehicle model and proposes a neural network based ap-
proach to model sUAV’s trajectory.

A. Small UAV vehicle model

A nonlinear dynamic model for sUAVs, both multi-copters and fixed-wing aircraft, can be derived using
Newton-Euler equations if the vehicle is assumed to be rigid and symmetric.'” '8 In the vehicle body axis,
the model can be written as force, kinematic, and moment equations shown in Eqn. 1, 2, and 3, respectively.
(u,v,w) are body axis velocities; (p,q,r) are body axis angular velocity rates; And (¢, 0,v) are roll, pitch,
yaw angles in body axis, respectively. (Fy,F,, F,) are body axis aerodynamic forces and (M, My, My,) are
body axis moments. J,, Jy, and J, are the moments of inertia about the principle axes in the body frame.
Then the vehicle location in the Earth frame can be expressed as Eqn. 4, where p,,, p., and h are the north
position, east position, and altitude, respectively, and s and ¢ denote sin and cos for simplicity. Although
the overall model can be generalized, models of aecrodynamic forces (Fy, Fy, and F,) and moments (M,
My, and My) can be quite different because of differences in vehicle types.
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aDifficulty arises when modeling departure and arrival trajectories because of unknown FMS settings.
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B. Neural network approach

Multi-layered neural networks are universal approximators and they are capable of approximating any con-
tinuous function over a specified compact set, according to past literatures in neural network studies.'92!
Various neural networks had been applied to nonlinear system identification and parameter estimation and
showed a lot of promise.?22* Considering the challenge associated with collecting vehicle states, this work
proposed to apply neural networks to model an entire vehicle including the plant and control system (shown
in Fig. 1) to reduce the number of vehicle states required to be collected. In this approach, at each time
step, the sUAV’s current states(zp, fo), next flight states(Z, f), and wind conditions (W, wy) are used as
training input and output pairs for the neural network. For a given vehicle, states are collected at various
flight conditions. Once the training is finished, this neural network will be applied to predict future flight
states at next time step based on current flight states. Therefore, one neural network should be capable of
representing one vehicle model for predicting trajectories.
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Figure 1. Trajectory modeling using Neural Networks

Because the model is used for trajectory prediction, inputs and outputs are limited to positions and
speeds. Nine inputs are selected for trajectory calculation: position deviations, speed deviations, and speeds.
Six defined outputs are position change rates and speed change rates. This setting leads to a multi-layered
neural network composed of nine input neurons, 20 hidden neurons, and six output neurons as shown in
Fig. 2.

The neural network is trained using the back-propagation approach with learning rate adaptation. The
learning rate update rule followed Jacobs’ hybrid algorithm,?® in which a momentum?® was added into the
Delta-Bar-Delta rule. The weight w;; between the ith and jth neurons is updated by Eqn. 5, where E(k) is
the mean square sum of the differences between the outputs and the desired target values and a = 0.75.

OE(k)
Aw;j(k +1) = aAw;;(k) — 77k+1m (5)
And the learning rate 7,41 is updated by:
Mkt1 = Mk + Ang (6)
Where the Any is given by:
K, if Sk,l-ék >0
Anp =4 —¢m if 6410, <0 (7)
0 otherwise
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Figure 2. Neural network structure: (9 input units, 20 hidden units, and 6 output units)

The 6 and ¢ are govened by:

_ Bk
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and
Op = (1-0)0, + 0651 (9)

where k = 0.01, g = 0.75, ¢ = 0.2, and 6 = 0.7.

III. Experiments

Because the scope of this paper is limited to concept proof, trajectory data are generated by a mathe-
matical vehicle model instead of being collected from actual flight tests. The generated trajectories are used
as both training and testing data for the neural network. Experiments are set up to examine if a neural
network can be trained to fit the training trajectory data and to check if the trained neural network can
calculated testing trajectories in a sequential manner without diverging away from the truth.

A. Trajectory data generation

In order to generate trajectory data for training and testing, a small UAV dynamic model and a controller
model are needed. Without loss of generality, a quadrotor model and a PD controller are selected for
generating trajectory data sets. By neglecting Coriolis terms and small angle approximations, a quadrotor
dynamics'® 2728 can be expressed as Eqn. 10, where w,, and w, are north and east components of the wind
vector and vetical wind component is negelected here. The v, and v, are vehicle velocities in the Earth
frame. The force and moments generated by motors can be simplified to Eqn. 11, where k¢ and k,, are the
aerodynamic force and moment coefficients for motors. L is the arm length and €; is angular velocity of
rotor 4.
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The PD position controller is shown in Eqn. 12 and Eqn. 13, where (x4, yq) and (%4, yq) are desired
positions and velocities and k, and k4 are associated gains. Eqn. 12 computes desired accelarations, and the
desired roll and pitch angles (¢4 and ;) are then calculated using Eqn. 13. Eqn. 14 shows the control law
for both roll and pitch angles, where k, ¢, kq,¢, kp,6, and kg are gains.

|:’.E.d‘| _ lkp(xd — x) + kd(id — 1’)‘| (12)
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This mathematical model was applied to generate trajectory data for training. As an initial effort, the
vehicle’s horizontal trajectory responses to side wind gust were generated: The vehicle is required to follow a
straight line at a constant altitude with various ground speeds and it will enter a constant north wind field,
where the wind direction is perpendicular to the flying direction. A total of 35 trajectories were generated
by changing vehicle’s ground speed and wind speed as shown in Table 1 and flight states were recorded every
0.01s. The current flight states and next flight states at each time step are treated as an input and output
pair, respectively. There are a total of 62,850 pairs of training data from these trajectories.

Table 1. Parameters for trajectory generation

Parameter Values Units
Vehicle ground speed 2, 5, 8, 11, 12, 13, 14, 15 m/s
Wind speed selected values in [1.0 9.5] m/s

B. Neural network training
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Figure 3. Mean square error in the training phase

In the training process, the training and testing data were applied without specfic ordering and the
objective was to reduce overall MSE even though errors at certain data points may not be small. The neural
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network was trained in 20,000 epochs and Fig. 3 shows the learning evolution for the first 5,000 epochs, where
the MSE of the normalized outputs was reduced below 0.005. The MSE was ended at 0.0032 after 20,000
epochs. Fig. 4 presents the histogram of x position training errors. These errors are between unnormalized
target outputs and the values generated by the trained neural network. The figure shows that most of the x
position training errors are within +0.2 meters. Fig. 5 presents error histograms of four outputs: x position,
y position, forward speed (at x axis), and lateral speed (at y axis). It is noted that training errors of velocities
are much higher compared with position errors; sometime they even exceed the 42 meter per second range.
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Figure 4. Histogram of errors in x position
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Figure 5. Histogram of errors in x position, y position, forward speed, and lateral speed

C. Trajectory prediction

In the process of predicting trajectories, the calculations are performed sequentially starting from the initial
flight state. In the prediction experiment presented in this section, the vehicle’s ground speed was set to
5m/s and the wind field was assumed to affect the area where x >= 25m. The wind came from the North
and the vehicle flied from the West to the East. The wind speed was set to bm/s. The experiment set-up is
similar to the training cases although the values are not the same.
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Figure 6(a) depicts the comparison between the true and predicted trajectories in the X-Y space. It
is noted that predictions are pretty accurate in the spatial dimension. As shown in Fig. 6(b), the lateral
errors are less than 0.25 meters over the entire trajectory. It is possible that the trajectory prediction may
not converge to the truth as time proceeds because the error may accumulate and cause the prediction
to diverge away eventually. The results from Fig. 6(a) also demonstrated that trajectory prediction errors
didn’t diverge although the training errors (especially for velocities) presented in previous section were not
small. However, the condition of stability remains unclear, and needs to be studied in future work.

Both spatial and temporal precisions are required for an accurate 4D trajectory prediction, Fig. 7(a)
shows the comparison of x position’s time histories between the predicted and true trajectories. The x
position errors were shown in Fig. 7(b)) and were bounded between 0 and 1.4 meters. This reveals that the
predicted trajectory from the neural network is a bit fast and ahead of the true trajectory. Fig. 8(a) shows
the comparison of forward speed’s time histories between the predicted and true trajectories. The errors
were shown in Fig. 8(b)) and were bounded between —0.7 and 0.6 meter per second. The comparison shows
that, despite of the similar trend, the temporal difference between forward speeds is relatively high.
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Figure 8. Temporal comparison of forward speeds (a) predicted and true trajectories (b) prediction errors

Table 2. Scenarios for trajectory prediction verification

Case la 1b 1c 2a 2b 2¢ 3a 3b 3c 4a 4b 4c
Vehicle ground speed (m/s) 2.0 2.0 20 50 50 50 80 80 &80 11.0 11.0 11.0
Cross wind speed (m/s) 07 24 75 09 50 86 14 6.7 95 19 40 9.2

This neural network was then applied to predict trajectory in various scenarios, where the cross wind is in
the range of [0.7,9.2] and the vehicle desired ground speed is within [2.0 — 11.0]. Table 2 lists the parameters
for 12 cases used for verification and Fig. 9 plots the mean square errors and the maximimum absolute errors
(MAE) between the predicted and actual trajectories. As discussed in previous sections, errors associated
with the‘X-Y* are spatial errors and errors associated with the ‘T-X* and ‘T-Y* are measured in temporal
dimension. Spatial errors (both MSEs and MAESs) are usually smaller than the other errors and most of them
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were bounded by 40.5 meters, which means the predicted trajectories are aligned with actual trajectories
well if the time was not taken into account. Temporal errors are usually a bit high, especially when the
cross wind is strong. Cross track errors are typically less than along-track errors and, not surprisingly, all
MAE:s are higher than corresponding MSEs. From the figure, it is noted that all errors are well kept below
2 meters, which shows that the neural network approach has great promise in modeling sUAV’s trajectories.
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Figure 9. Errors between the predicted trajectory and the truth in various cases

IV. Conclusion

This work proposed a neural network approach for modeling sUAV’s dynamics and control system for
trajectory prediction. The motivation was to model sSUAV’s trajectory in a practical way such that the needs
of intensive wind tunnel tests and flight tests are minimized while the fidelity of trajectory is not reduced
much. If successful, this approach will also greatly reduce computational time when calculating trajectories.
A neural network composed of nine inputs, 20 hidden neurons, and six outputs was proposed and trained
using the back-propagation algorithm with the hybrid delta-bar-delta learning rule. As an initial work, a
quadrotor vehicle model associated with a PD controller was used to generate trajectory data for training
and testing purposes. Various trajectories were used to train the neural network with different vehicle ground
speeds and side wind conditions. After the neural net is fully trained, it is used to predict future flight states
at next time step based on current flight state information. This proposed approach was then verified with
different but similar set of scenarios. The results show that the neural network can be trained to fit the train
data. It can be used in a sequential manner to predict the trajectory step by step without diverging away
from the truth. In addition, the 4-D trajectory prediction errors are less than 2.0 meters while the spatial
errors are even less. Overall, the proposed approach shows great promise in modeling SUAV trajectories.

In the future work, further research/experiments are needed to improve this method. First, training data
need to be much selective and representative to increase the efficiency and effectiveness of training. Second,
thorough experiments are needed to prove its application with wide-range flight conditions and various
vehicle types. Third, the conditions of stable trajectory prediction need to be studied and understood.
Finally, different machine learning methods can be explored to identify good machine learning and training
algorithms.
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