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Abstract  
In the terminal airspace, integrated departures 

and arrivals have the potential to increase operations 
efficiency. Recent research has developed genetic-
algorithm-based schedulers for integrated arrival and 
departure operations under uncertainty. This paper 
presents an alternate method using a machine job-
shop scheduling formulation to model the integrated 
airspace operations. A multistage stochastic 
programming approach is chosen to formulate the 
problem and candidate solutions are obtained by 
solving sample average approximation problems with 
finite sample size. Because approximate solutions are 
computed, the proposed algorithm incorporates the 
computation of statistical bounds to estimate the 
optimality of the candidate solutions. A proof-of-
concept study is conducted on a baseline 
implementation of a simple problem considering a 
fleet mix of 14 aircraft evolving in a model of the Los 
Angeles terminal airspace. A more thorough 
statistical analysis is also performed to evaluate the 
impact of the number of scenarios considered in the 
sampled problem. To handle extensive sampling 
computations, a multithreading technique is 
introduced.  

Introduction 
In the National Airspace System, terminal 

airspaces are characterized by high traffic volumes in 
narrow portions of airspace, where flights are 
scheduled to depart and arrive in short periods of 
time. In these constrained environments, most aircraft 
are climbing or descending at various speeds. In 
current operations, route segments and fixes are 
spatially segregated in order to reduce interactions 
between traffic flows and controllers enforce spatial 
separations between aircraft in the same flow to 
guarantee flight separation. To manage shared 
resources in current procedures, controllers assign 
different routes and independent fixes to arrival and 
departure flows. Such separation strategies introduce 

inefficiencies in the airspace usage with longer 
departure and arrival routes and altitude constraints. 
To remedy these inefficiencies and support improved 
operations efficiency, a time-based separation 
strategy is a potential approach to manage integrated 
arrivals and departures using shared resources. 

Over the past decades, many scheduling research 
efforts have aimed to improve the operations 
efficiency in the terminal airspace by solving 
separately arrival scheduling problems [1-6], 
departure scheduling problems [7-9] and airport 
surface management problems [10,11]. In more 
recent work, researchers have been focusing on 
integrated scheduling problems in which resources 
such as waypoints, fixes and/or routes are shared 
between departure and arrival flows [12-16]. In 
recent studies, Capozzi et al. demonstrated that 
integrated departures and arrivals in metroplex areas 
have the ability to improve operations efficiency 
[17,18]. Moreover, Xue et al. showed in recent 
stochastic scheduling analyses focusing on integrated 
operations in the terminal airspace, that flight time 
could be saved when arrival and departure procedures 
share waypoints [13]. However, shared waypoint 
solutions are sensitive to uncertainty. Xue et al. 
analyzed the impacts of flight time uncertainty on 
scheduled integrated operations and on controller 
interventions [14]. It was found that the results 
computed by the stochastic optimization could help 
identify compromise schedules that reduce both the 
number of controller interventions and delays. 
However, considering uncertainty in models can 
represent a computational challenge with a level of 
complexity that can prevent real-time applications 
and further developments. Previous work conducted 
by the authors focused on minimizing computation 
time when dealing with uncertainty through the usage 
of Graphics Processing Units (GPU) [19]. The GPU 
computing technique enabled a fast decision support 
algorithm to schedule flights evolving in a mixed-



environment sharing resources in the presence of 
uncertainty. 

Given the similarities to production or 
manufacturing operations scheduling problems, 
airport runway scheduling problems can be described 
in terms of machine job-shop scheduling 
terminology. A few examples can be found in [5,20-
21]. Beasley et al. adapted the machine-scheduling 
model to solve the aircraft-sequencing problem [5]. 
The processing time of a job on a machine was 
analogous to the separation requirements between 
aircraft. Both job-shop and aircraft sequencing 
problems are time and sequence dependent. A review 
of the literature shows that many machine-scheduling 
models developed so far consider sequence-
dependent setup times and most of them are 
deterministic [22,23]. The stochastic machine job-
shop scheduling studies primarily focused on 
probabilistic processing times [24-26]. But in the 
context of arrival and departure operations at airports, 
uncertainty affects the exact knowledge of 
operational factors such as pushback times or taxi 
times to the runway. In machine scheduling 
terminology this can be referred to probabilistic 
release times and probabilistic due dates. Stochastic 
versions of such problems received limited attention 
and probabilistic release times and due dates were 
rarely introduced. One of the only models that 
considers both was developed by Wu and Zhou to 
solve a single machine-scheduling problem [27]. 
However, the model developed in that study does not 
include sequence-dependent setup times. The first 
attempt that considered sequence-dependent setup 
times, probabilistic release and due dates can be 
found in a recent work by Sölveling et al, who 
developed a runway planning optimization model 
[11]. 

This present paper contributes to stochastic 
scheduling optimization in the field of air traffic 
management. This document presents an alternative 
method to model and solve integrated departures and 
arrivals in the terminal airspace under uncertainty. A 
scheduler is built that computes schedules for 
terminal airspace waypoints that are shared by both 
arrivals and departures. Inspired from operations 
research, the scheduler is based on a machine job-
shop scheduling problem formulation in which jobs 
and machines are respectively represented by aircraft 
and waypoints. For both arrivals and departures, 

wake vortex separation requirements are enforced at 
the runway threshold, i.e. sequence-dependent setup 
times, and speed-varying constraints are derived to 
represent the temporal control separation strategy 
adopted. Because flight times are sensitive to 
perturbations, error sources are added to release flight 
times and probabilistic runway dates are examined to 
illustrate the impact of uncertainty on estimated times 
of arrival and estimated times of departure. Second, a 
multistage stochastic programming approach is 
chosen to formulate the problem because of its ability 
to handle multi-objective optimization and multiple 
constraints in the presence of uncertainty. The first 
stage attempts to solve the optimal sequencing 
problem based on aircraft weight classes and the 
second stage attempts to solve the routing and 
scheduling problem while minimizing the impact of 
flight time uncertainty. The third stage focuses on 
adjusting the computed schedules to maximize the 
on-time performance of the flights to the runway. The 
stochastic programming problem is formulated as the 
optimization of an expected value cost function and 
candidate solutions are obtained by solving sample 
average approximation problems with finite sample 
size. Third, a proof-of-concept study is accomplished 
by applying the scheduler to arrival and departure 
flows in a model of the northern-western flows of the 
Los Angeles terminal airspace. Several simulations 
are run and individual flight time savings are 
computed for both departure and arrival flows. 
Finally, a more thorough statistical analysis is 
performed to assess the methodology performance, 
and evaluate the impact of the number of scenarios 
considered in the sampled problem on solutions and 
computation times. The objective of this work is to 
provide a stochastic optimization formulation that 
solves a routing and scheduling problem for terminal 
airspace traffic and produces optimal solutions with 
minimal runtime.  

This paper is organized as follows. The problem 
formulation is presented in Section II and the solution 
approach is described in Section III. In Section IV, a 
proof-of-concept is conducted and results are 
discussed. A statistical analysis is performed in 
Section V. Finally, a summary of the accomplished 
work, concluding remarks and next steps are 
presented in Section IV. A nomenclature is added in 
Appendix at the end of the paper for notations 
reference. 



Problem Formulation 
This section presents the framework in which 

the integrated arrival/departure operations problem is 
approached and modeled.  

Problem Setup 
Aircraft Weight Classification  

During all flying phases, aircraft generate wake 
vortices of different strengths and intensities, which 
mainly depend on aircraft weight. Therefore this 
study considers different weight-based aircraft types 
defined according to the Federal Aviation 
Administration (FAA) aircraft weight classification 
[30]. The standard defines three aircraft weight 
categories, small (S), large (L) and heavy (H). In 
addition, the Boeing 757 is often considered as 
category. A Boeing 757’s weight is in the large class, 
yet it’s wake is the size of a heavy’s wake. Recently a 
fifth category, called “super”, was added with the 
introduction of the A380 in the National Airspace 
System, but in this paper this aircraft type is not 
considered [38]. Therefore, four categories, denoted 
𝑆, 7, 𝐿,𝐻, are considered in this work. 

Aircraft Separation  
To ensure safe operations in terminal airspaces 

in current operations, the FAA defines aircraft 
separation distances that need to be enforced between 
aircraft at all times [30]. Controllers spatially 
separate aircraft flying on the same traffic flow by 
imposing these separation requirements. Moreover, 
controllers also spatially segregate arrival and 
departure flows by assigning them independent 
routes to fly. This introduces inefficiencies in the 
airspace usage with longer flight routes and altitude 
constraints.  

To mitigate such constraints and allow some 
flexibility in future operations, this work integrates 
arrivals and departures by implementing a temporal 
control separation strategy that converts separation 
requirements prescribed in distance to time scale 
using the aircraft speeds. In the air and between all 
aircraft pairs, a fixed separation distance of 4 nautical 
miles (nmi) is imposed according to [18] and 
converted into time via the speed of the leading 
aircraft of each pair. On the ground at the runway, the 
standard wake vortex separations are imposed 
between all aircraft pairs [30,37]. But because the 
sequence of aircraft weight-class determines wake 

vortex separation requirements, the requirements are 
asymmetric at the runway. If a large aircraft leads a 
small, the separation requirement will be greater than 
the opposite because large aircraft produce larger 
wake turbulences than small aircraft. Moreover, 
separation times are different for arrival and 
departure flights because arrivals and departures fly 
at different speeds.  

Airspace and Route Model 
A general airspace and route model was defined 

to facilitate its use for any terminal airspace. Because 
Standard Terminal Arrival Routes (STARs) and 
Standard Instrumental Departures (SIDs) procedures 
need to be flown by aircraft when flying within the 
terminal airspace, these procedures are used in this 
model to define the airspace routes as ordered sets of 
waypoints. 

Uncertainty and Controller Intervention 
Considerations  

In terminal areas, flight schedules are subject to 
uncertainties that come from many sources such as 
errors in aircraft dynamics, inaccurate wind 
predictions or human factors. In this model, in order 
to better reflect the reality of current air traffic 
operations, uncertainty is added to the flight times by 
introducing errors that follow probabilistic 
distributions. Details about the distributions will be 
provided in a later section. As a consequence, 
controllers might be required to intervene and prevent 
an unexpected loss of separation. 

Machine Job-Shop Modeling 
In this paper, a machine job-shop scheduling 

formulation is derived from operation research and 
adapted to model the integrated departure/arrival 
operations in the terminal airspace. Integrating flights 
using shared resources includes routing, sequencing 
and scheduling. Therefore, the scheduling model is 
extended to a scheduling and routing model. 
Similarities between the present scheduling problem 
and most of the machine job-shop scheduling 
problems found in the literature allow describing this 
problem using job-shop scheduling notations. To 
emphasize the mapping of the technique to this 
application, these are mentioned in parenthesis. 

The present problem consists of a set of aircraft 
(set of jobs), denoted 𝐴𝐶, to be scheduled for arrival 
or departure in the terminal airspace considered in a 



given planning horizon (e.g. from 9:00AM to 
9:30AM). Each aircraft belongs to an aircraft 
category (job category) defined by a specific type 𝑇. 
An aircraft type is twofold, it is represented by a 
weight class 𝐶 = {𝐻, 7, 𝐿, 𝑆}  (Table 1) and an 
operation 𝑂 = {𝐴,𝐷}, where 𝐴 stands for arrival and 
𝐷  for departure. For example, a large departing 
aircraft and a small arriving aircraft have their types 
respectively denoted by 𝑇!" and 𝑇!". The set of all 
weight-operation combinations form the aircraft type 
set 𝐾 , i.e. 𝐾 = {𝑇!" , 𝑝 ∈ 𝐶, 𝑞 ∈ 𝑂}. In the terminal 
airspace, each aircraft 𝑗 ∈ 𝐴𝐶 flies a route defined by 
a flight plan, i.e. sequence of waypoints (sequence of 
machines), defined by the SIDs and STARs of the 
airspace and route model. The entire set of waypoints 
is denoted by 𝐼  and each waypoint 𝑖 ∈ 𝐼 . For 
modeling simplicity, the runway is considered as the 
last waypoint of arrival routes and as the first 
waypoint of departing routes. For arrival procedures, 
no vectoring to the base turn is modeled.  

Additionally, each aircraft has a release time 𝑟!, 
processing times 𝑝!" at each waypoint 𝑖 of the route 
flown, and a deadline 𝑑! also called due date. The 
aircraft release time corresponds to when the aircraft 
is expected to enter the airspace considered. Hence, 
for arrival flights, the release time is when aircraft are 
expected to fly by the first waypoint of the arrival 
route, and it is the estimated time of departure (ETD) 
at the runway threshold for departing flights. An 
aircraft starting time 𝑡! corresponds to the exact time 
the aircraft enters the airspace. A processing time 𝑝!" 
is defined by the time aircraft 𝑗 is being processed by 
waypoint 𝑖 . Each waypoint 𝑖  can only process one 
aircraft at a time and each aircraft 𝑗 can only fly by 
one waypoint at a time. Therefore in this model, a 
processing time is defined as a waypoint block time 
and depends on the separation time requirements 
between type-based aircraft pairs. To determine the 
waypoint block time for aircraft 𝑗 , the model 
identifies the type of the following aircraft. Then 
using the types of the aircraft forming the aircraft 
pair, it computes the separation time requirement. On 
the ground at the runway, wake vortex separation 
times define the runway block times. However, in the 
air, waypoint block times are determined by the 
conversion of distance separations to temporal 
separations via the speed of the leading aircraft. In 
operations, based on the aircraft leader’s speed, 
updated speed clearances are given to the following 

aircraft to maintain separation. Aircraft due dates are 
times at which aircraft are expected to exit the 
considered airspace. In the present case, the due date 
is defined as the estimated time of arrival (ETA) for 
an arrival and as the fly by time of the last waypoint 
of the departure route for a departure. These due 
dates are estimated time values and in reality aircraft 
might complete their journey earlier or later than 
expected. Therefore, an aircraft also has a completion 
time, which corresponds to the exact time aircraft exit 
the airspace; it is denoted 𝑐!  for aircraft 𝑗 . Each 
arrival/departure considered has an ETA/ETD and 
these times represent expected time values at the time 
of operation; they are not known with certainty. To 
integrate impacts of uncertainty, perturbations are 
added to release dates and due dates of both arrival 
and departure flights such that probabilistic runway 
dates ETA/ETD are examined. Finally, denoted by 𝑓! 
the global exit time of aircraft 𝑗  computed after 
uncertainty considerations.  

To illustrate the different notations introduced, 
two waypoint timelines are drawn in Figure 2.   

 
Figure 1. Waypoint timelines with two arrivals  

Each row corresponds to a timeline associated with a 
waypoint and for simplicity only two waypoints, 
WPT and RWY, are considered. In this simple 
example, two arrival flights of types 𝑇!"  and 𝑇!"  are 
being scheduled. Both aircraft arrive at waypoint 
WPT later than their respective release time (𝑡! > 𝑟! 
and 𝑡! > 𝑟!) because of uncertainty. At the runway 
RWY, the first aircraft arrives later than its ETA 
( 𝑐! > 𝑑! ) whereas the second aircraft is ontime 
𝑐! = 𝑑! .  For the two timelines, waypoint 

processing times 𝑝!"    , where   𝑖 ∈ 1,2  and   𝑗 ∈
{𝑊𝑃𝑇,𝑅𝑊𝑌}, are represented by blocks of different 
lengths.  

Problem Statement 
The following problem will be discussed in this 

paper as a means to examine the proposed solution 
for schedule integration. Given a set of aircraft 
𝐴𝐶 = {1,… , 𝑛}  each departing or arriving in a 



particular airspace within a 30-minute time period, 
compute the optimal aircraft schedules and routings 
such that the impact of flight time uncertainty is 
minimized subject to the following constraints: 

• Waypoint Capacity Constraints: waypoints 
must process one aircraft at a time and 
aircraft must be separated in the air at each 
waypoint by a minimum distance 
(converted to time using speed) from any 
other aircraft.  

• Flight Plan Waypoint Precedence 
Constraints: when assigned to a route, 
aircraft have to fly the corresponding flight 
plan and follow the waypoints in order. 

• Runway Constraints: each aircraft must be 
separated by the minimum wake vortex 
separation (converted to time) at the 
runway threshold. Moreover, no departing 
flight can be on the runway before its 
estimated time of departure. 

• Speed Constraints: each aircraft speed 
must stay within a specific speed range 
delimited by minimum and maximum 
speeds appropriate for that aircraft type. 

The minimization objective is threefold. The 
first goal is to find a feasible aircraft sequence that 
minimizes the sum of exit times for the 𝑛  flights 
considered, i.e. overall minimum flight time delay. 
The second goal is to process the aircraft as soon as 
possible after their release times in order to minimize 
the amount of flight delay at release (i.e. minimize 
the difference between each aircraft start time and 
release time). The last goal is to minimize the 
earliness and tardiness of the computed schedules at 
exit waypoints. Because of the uncertainty presence 
in the flight times, potential conflicts, i.e. loss of 
separation between aircraft might occur. In order to 
simulate the resolution of such conflicts, the 
controller behavior is modeled as the number of 
times aircraft speed must be changed. Using the 
notations previously defined, the objective function 
can be written as in Equation 1. The variables 
denoted by 𝜆 represent the relative objective weights 
and each 𝜆 ∈ [0,1] . For the second and third 
objective terms in Equation 1, {𝛼! ,𝛽!}  and {𝛾! , 𝛿!} 
represents respectively for each aircraft 𝑗 , the 
earliness and tardiness costs at release waypoints and 
the earliness and tardiness costs at exit waypoints. 

𝑂𝑏𝑗 = 𝜆! 𝑓!

!

!!!

+ 𝜆! 𝛼!max 𝑟! − 𝑡! , 0
!

!!!

+ 𝜆! 𝛽!max 𝑡! − 𝑟! , 0                               (1)
!

!!!

+ 𝜆! (𝛾!max  {𝑑! − 𝑐!

!

!!!

, 0})

+ 𝜆! (𝛿!max  {𝑐! − 𝑑!

!

!!!

, 0}) 

To account for uncertainty, it is assumed that 
release times 𝑟! and flight due dates 𝑑! are not known 
with certainty. It is assumed that error sources that 
follow discrete and finite probabilistic distributions 
are added to the different release times and flight due 
dates. A scenario 𝜔! is a vector of perturbed flight 
times 𝑟!!  if 𝑞 = 𝑟  or 𝑑!!  if 𝑞 = 𝑑  (i.e. 𝑟!! = 𝑟! + 𝜉!!  or 
𝑑!! = 𝑑! + 𝜉!!) with a corresponding probability of 
occurrence. Let 𝜉! = {𝜉!! ,… , 𝜉!!} be the vector of 
perturbations 𝜉!!  for scenarios of type 𝑞, 𝑞 ∈ {𝑟,𝑑}, 
where 𝑚!  is the number of scenarios of type 𝑞 . 
Finally, denote 𝛺! as the set of all scenarios of type 
𝑞, 𝑞 ∈ {𝑟,𝑑}, such that 𝛺! = {𝜔!! ,… ,𝜔!!}, where 
each scenario has a probability of occurrence 𝜌!!. 

The objective function of the stochastic problem 
is now extended to include the uncertainty 𝜉! on the 
release times and 𝜉! on the due dates, and formulated 
as the optimization of an expected value cost function 
to consider all scenario occurrences. This formulation 
computes the optimal aircraft sequence, including 
both arrivals and departures, at the runway threshold. 
The output of the program defining the optimal 
aircraft sequence at the runway is a vector 𝑥 which 
can be described by the sequence of aircraft positions 
at the runway, i.e. 𝑥 = (𝑇!"

! ,… ,𝑇!"
! ,… ,𝑇!"

! ) where 
𝑝 is the position such that max 𝑝 =   𝑛 and 𝑇!"  is 
the type of the aircraft having a weight class 𝐶 and an 
operation 𝑂 . Denote 𝑋  as the set of all possible 
sequences and 𝑥 ∈ 𝑋 . The objective function 
previously detailed in Equation 1 can then be 
rewritten as following: 

min
!∈!

𝔼[𝑂𝑏𝑗 𝑥, 𝜉! , 𝜉! ]                                                               (2) 

Equation 2 includes the uncertainty dependency, i.e. 
𝜉! , 𝑞 ∈ {𝑟,𝑑}  in the perturbed flight times 𝑟!!  if 
𝑞 = 𝑟 or 𝑑!! if 𝑞 = 𝑑. 



Solution Approach 
The integrated arrival/departure terminal 

airspace operations problem is modeled as a machine 
job-shop scheduling and routing problem as 
described in the previous section. A multistage 
stochastic programming approach is developed to 
solve the scheduling and routing of the integrated 
terminal airspace operations under uncertainty.  

Information about aircraft and schedules 
received by air traffic controllers becomes more 
certain the closer aircraft operations are to execution 
(arrival and departure). An air traffic controller is 
more likely to know with high accuracy the aircraft 
type mix of the aircraft set that will depart or arrived 
in the next 30-minutes than the exact arrival and 
departure times of each aircraft. Therefore, 
decomposition by stage is appropriate for the 
stochastic scheduling. 

Given the described structure, the scheduling 
and routing problem can be modeled as a 3-stage 
stochastic program. Due to wake vortex separation 
requirements, the runway capacity directly depends 
on the aircraft weight sequence. Hence, the first stage 
seeks to find the optimal aircraft sequence based on 
the aircraft weight classes and this stage is purely 
deterministic. Then, once the optimal sequence is 
computed, the second stage schedules and routes the 
aircraft. Because release times may be affected by 
uncertainty, errors that follow normal distributions 
are introduced in the release times. Several scenarios, 
each representing a set of perturbed release flight 
times, are generated and tested. Finally, the third 
stage adjusts the schedule and route of each flight 
considered to maximize the on-time performance of 
the aircraft at its exit. To compute robust schedules, 
several scenarios corresponding to different sets of 
due dates are generated and tested in this last stage. 

Because of uncertainty, there are many 
parameters that can affect the flight schedules. 
Aircraft may reach the runway earlier, on time or 
later than their estimated flight schedules. Depending 
on how early or late a flight will be, uncertainty 
induces a variety of potential different scenarios. 
Naturally, the number of scenarios will increase 
exponentially if the number of flights is increased. 
Therefore, sampling techniques are used to generate 
good solutions for a subset of scenarios. 

Mathematical Formulation 
Given the problem statement, each stage is now 

described on its own and followed by a summary of 
the overall program. The constraints presented in 
previous section are enforced in the solution process 
and are met by all three stages combined. 

Stage 1 
The first stage problem is a deterministic 

sequencer. It consists of computing a sequence of 
aircraft types at the runway threshold such that the 
sum of global exit times of each flight is minimized 
subject to several constraints. The first and second 
constraints ensure that the number of runway slots for 
each aircraft type is equal to the number of aircraft of 
each type in the input data and that only one aircraft 
is assigned per runway slot. The last constraint 
ensures that the runway separation requirements are 
met. 
Stage 2 

Once uncertainty has affected release times, the 
second stage problem assigns flights to the aircraft 
runway slots determined by stage 1. A separate stage 
2 is completed for each scenario 𝜔!. Stage 2 also 
computes the optimal scheduling and routing for each 
flight. The objective is formulated as the 
minimization of the sum of differences between start 
time and release time of each aircraft. At that point, 
the program does not know the due dates and tries to 
process them as soon as they enter the airspace 
model. Instead, completion times, i.e. ETAs for 
arrivals and fly by times at the last waypoint of 
departure routes for departures, are estimated such 
that the separation distances are respected. For the 
assignment, this stage is constrained to only assign 
one flight with the appropriate type to one aircraft 
slot on the runway. For the schedule and routing 
computations, this stage needs to respect the flight 
plan waypoint precedence constraints, the waypoint 
capacity constraints and the speed constraints. 

Stage 3 
Once uncertainty has affected due dates, the 

third stage optimizes the schedules of each flight by 
minimizing the sum of differences between due dates 
and completion times of each aircraft. Therefore, the 
scheduling and routing computed in stage 2 are re-
optimized to minimize the earliness and tardiness of 
each flight at the exit waypoint. As with stage 2, a 
separate stage 3 is completed per scenario ω d. The 



optimization in stage 3 is subject to the same set of 
constraints as stage 2. 

During each stage, knowledge is assumed from 
previous stage and information is carried from one 
stage to the next. Using the modeling framework, 
notations and stage descriptions, the problem 
formulation can be described as an embedded 3-stage 
stochastic program as illustrated by Equation 3. 

min
!∈!

𝑓! 𝑥 + 𝔼!![min!∈!
𝑓! 𝑥, 𝜉! + 𝔼!![min!∈!

𝑓!(𝑥, 𝜉!)]]    (3) 
where 𝑓!  is deterministic and where 𝑓! and, 𝑓! 

depend on the realization of perturbations 𝜉!  and 𝜉!. 
𝑓!, 𝑓! and 𝑓! can be written as follows. 

𝑓! 𝑥 = 𝜆! 𝑓!

!

!!!

,      𝜆! = [0,1]                                                                                          (4) 

For each scenario 𝜔!, 

𝑓! 𝑥, 𝜉! = 𝜆! 𝛼!max r! − 𝑡! , 0
!

!!!

+ 𝛽!max 𝑡! − 𝑟! , 0 ,     𝜆! = [0,1]        (5) 

For each scenario 𝜔!, 

𝑓! 𝑥, 𝜉! = 𝜆! 𝛾!max d! − 𝑐! , 0
!

!!!

+ 𝛿!max 𝑐! − 𝑑! , 0 ,     𝜆! = [0,1]        (6) 

The objective function in Equation 3 consists of 
a weighted sum of three terms. In fact, the second 
term of Equation 3 can be split into the sum of two 
expected values when using the linear properties of 
expected value. The first term is the first stage 
objective (Eq. 4), the second term is the expectation 
of the second stage objective function value (Eq. 5) 
and the last term is the expectation value of the 
expectation of the third stage objective function value 
(Eq. 6). To evaluate the solution of this type of 
formulation and obtain optimal candidate solutions, 
many scenario problems have to be generated and 
tested. This would require a significant computational 
effort. Therefore, a methodology is developed to 
reduce the size of the scenario set to a manageable 
size and a sampling method is introduced. 

The Sample Average Approximation 
The solution methodology chosen is the Sample 

Average Approximation (SAA) method. Assuming 
that samples 𝜉!,… , 𝜉!  can be generated from a 

random vector 𝜉 , where 𝑁  is the sample size, the 
SAA method is a Monte Carlo based technique that 
approximates a stochastic program by replacing the 
expectation by its sample average. The stochastic 
program is thus replaced by a sample average 
approximation that can be solved by a deterministic 
optimization algorithm. In this problem, because two 
random vectors 𝜉! and 𝜉! are considered, denote 𝑁! 
and 𝑁!  as the respective number of replications of the 
random vectors. Therefore, the SAA problem for the 
3-stage stochastic program can be defined as:  

min
!∈!

𝑓! 𝑥 +
1
𝑁!

(𝑓! 𝑥, 𝜉! +
1
𝑁!

𝑓!(𝑥, 𝜉!))
!!

!!!

!!

!!!

            (7) 

where 𝑓!, 𝑓!  and 𝑓!  are defined respectively by 
Equations 4, 5 and 6. 

In this research, because it is assumed that the 
random vectors 𝜉!  and 𝜉!  follow discrete 
distributions with finite support of respective size 𝑚! 
and 𝑚! , each element of the respective finite 
supports {𝜉!! ,… , 𝜉!!}  and {𝜉!! ,… , 𝜉!!}  has 
respective probability 𝑝!! ,… , 𝑝!!  and 𝑝!! ,… , 𝑝!! . 
The expected value problem can then be replaced by 
its equivalent using probabilities and the SAA 
problem for the 3-stage stochastic program can be re-
written as: 

𝑚𝑖𝑛
!∈!

𝑓! 𝑥 + 𝑝!!(𝑓! 𝑥, 𝜉! + 𝑝!!𝑓!(𝑥, 𝜉!))
!!

!!!

!!

!!!

            (8) 

where 𝑓!, 𝑓!  and 𝑓!  are defined respectively by 
Equations 4, 5 and 6. Denote Equation 8 equivalent 
to min!∈! 𝑔(𝑥). 

In summary, the proposed approach 
approximates the true stochastic problem defined by 
Equations 3, 4, 5 and 6 by a SAA problem defined in 
Equation 7. Denote 𝑣∗  and 𝑣  as respectively the 
optimal objective function value of the true problem 
and the optimal objective function value of the SAA 
problem. Shapiro and Homem-de-Mello showed in 
[29] that 𝑣  converges to 𝑣∗  with probability 
approaching one as the sample size increases (i.e. 
𝑁! → ∞   and 𝑁! → ∞  in this problem). However 
increasing the number of random vector realizations 
introduces large computational times. Therefore, the 
proposed methodology suggests solving several SAA 
problems with smaller sample size rather than solving 
one SAA problem with a large number of random 
vector realizations. Define 𝑀 as the number of SAA 



problem independent replications. As defined 
previously, recall that 𝑚! and 𝑚! are the respective 
finite number of realizations (or scenarios) in stage 2 
and stage 3. The following steps summarize the 
proposed solution methodology using the SAA 
method: 

A. For each repetition 𝑚 = [1,𝑀]: 
a. Generate 𝑚!  and 𝑚! 

independently and identically 
distributed scenarios for each 
flight. 

b. For each fixed scenario 
𝑚! = [1,𝑚!]: 

i. Solve the 3-stage 
program, store the 
optimal solution for each 
scenario, 𝑚! = [1,𝑚!] , 
and compute statistical 
upper bounds.  

ii. A list of 𝑚! solutions is 
obtained. Save the 
solution (i.e. sequence, 
schedule and routing) 
with minimum objective 
function.  

c. A list of 𝑚!  solutions is 
obtained. Save the solution (i.e. 
sequence, schedule and routing) 
with minimum objective 
function. 

B. A list of 𝑀  candidate solutions is 
obtained. Compute statistical lower 
bounds. 

C. For each of the 𝑀 solutions, compute the 
optimality gap and estimated variances. 
Choose the solution according to specific 
optimization goals.  

Because the problem is formulated as a mixed-
integer linear program, a global solution will be 
computed for each repetition. However, the values of 
parameters 𝑀 , 𝑚!  and 𝑚!  affect the robustness of 
the computed optimal solutions and the computation 
time. Hence, their adjustments are studied in the 
statistic analysis section. 

Implementation 
The mathematical model of the mixed-integer 

linear program is implemented in Python [31] and 
Gurobi [32] is used as the optimization solver. The 
branch and bound algorithm is selected to solve step 
A.(b).i of the proposed methodology. The code is run 
on a Macintosh platform with 2.5GHz Intel Core i5 
and 16 GB RAM. To accelerate the computation 
time, a multi-threading approach is implemented to 
compute each repetition individually with one thread. 
Note that the relative weight 𝜆s, 𝜆 ∈ [0,1] are set to 1 
in this particular implementation but will be varied in 
future implementations. 

Proof-of-concept  
A proof-of-concept study is conducted on a 

baseline implementation of a simple problem. The 
goal of this research phase is to provide first evidence 
that the solution obtained using the developed 
methodology is a candidate to save total and 
individual flight time without increasing drastically 
the number of controller interventions. 
Experimentation is performed on a realistic 
application and different test cases are explored to 
understand the computed solutions. 

Application to the Los Angeles Terminal 
Airspace 
Description 

The interactions between arrivals and departures 
in the Los Angeles terminal airspace constitute an 
interesting case study because of their complex 
natures and layouts. Figure 1 shows arrival and 
departure routes based on the published SADDE6 
STAR and CASTA2 SID for the Los Angeles 
International Airport (LAX).  

The SADDE6 procedure stipulates that arrivals 
coming from fix FIM should fly toward fix SMO via 
SYMON, SADDE and GHART fixes. Departure 
flights to the North need to follow the SID procedure 
CASTA2. According to CASTA2, departures takeoff 
from Runway 24L (represented by RWY in this 
model) and fly toward WPT1 1  via NAANC and 
GHART fixes. 

                                                        
1WPT1 is a waypoint made-up to simplify the route descriptions. 



Figure 2. Route interactions between arrivals and 
departures in the LA terminal airspace 

GHART is the shared resource between SADDE6 
and CASTA2 procedures. In this paper, SADDE6 
and CASTA2 are denoted indirect routes for 
simplicity. Moreover, although it is not common 
practice at LAX, this model assumes that arrivals and 
departures operate on the same runway 24L 
(represented by RWY) to make this study more 
interesting. In current operations, altitude constraints 
are imposed at waypoint GHART− arrival flights are 
required to maintain their altitude above 12,000 feet 
and departure flights below 9,000 feet and this forces 
flights to fly by WPT1 and WPT2. However, Figure 
1 illustrates that if there were no flow interactions, 
arrivals and departures could fly more direct routes, 
share resources and save flight times. A direct route 
for departures would be RWY-WPT22-WPT1 and a 
direct route for arrivals would be FIM-WPT1-SMO.  

Timar et al. [36] showed that in current 
operations of the Los Angeles terminal airspace, 
28.1% of LAX arrivals follow SADDE6 and 10.4% 
of LAX departures follow CASTA2. This can be 
converted to 220 arrivals and 80 departures in a 
typical traffic day. The current study focuses on these 
partial flows and waypoints represented in Figure 1 
are used to model the airspace and flight plan route.  

A representative schedule of 14 flights is 
extracted from historical data corresponding to the 
Los Angeles partial flows dated December 4, 2012. It 
covers a 30-minute traffic time period from 9:00 AM 
to 9:30 AM including 6 departures to the North from 
Runway 24L (RWY) and 8 arrivals from fix FIM. 

                                                        
2 WPT2 is a waypoint made-up to simplify the route descriptions. 

Table 1 presents the reference schedule and details 
the scheduled initial times of the flights. These times 
are relative to simulation start time and flights are 
listed in chronological order.   

Table 1. Reference Schedule 

Order FIM (sec) RWY (sec) 

0 39 68 
1 446 165 
2 728 363 
3 1106 529 
4 1332 1613 
5 1475 1830 
6 1613 NA 
7 1770 NA 

For testing purposes in this work, a fleet mix of 
14 aircraft (described in Table 2) is to be scheduled 
and routed within the 30-minute time period of the 
reference schedule presented in Table 1. 

Table 2. Aircraft Fleet Mix 

Type 
Aircraft 

Weight Operations 

A0 H A 
A1 L A 
A2 S A 
A3 S A 
A4 L A 
A5 L A 
A6 L A 
A7 L A 
A8 S D 
A9 L D 

A10 H D 
A11 L D 
A12 L D 
A13 L D 

Along each route, in particular along every 
waypoint pair-based route segments, aircraft of all 
types can fly within a speed range such that 
𝑣   ∈ [𝑉!"#,𝑉!"#] . For departures, 𝑣   ∈ [180,250] 
and for arrivals 𝑣   ∈ [280,350].  



Modeling 
As mentioned previously, this research uses 

temporal controls to separate aircraft at all times. To 
show the benefits of using shared resources in the 
spatial dimension, this research also investigates 
spatial-based separation methods in which temporal 
controls are implemented by default. The spatial 
separation strategy only uses indirect routes used in 
current STAR and SID operations to separate aircraft. 
The hybrid separation strategy additionally allows 
direct routes to be flown for both STAR and SID 
procedures.  

In the formulation of the hybrid separation 
method, three different types of decision variables are 
defined for each flight: a timing variable, a routing 
variable and a speed variable. For each FIM arrival, 
the timing variable is the release time at fix FIM 
whereas for each departure to the North, it is the 
release time at the runway RWY. For both arrival and 
departure flights, the routing variable is the route 
option flown: 0 for indirect and 1 for direct and the 
speed variables are the different aircraft speeds.  

Longitudinal separation constraints are imposed 
at all times between all aircraft pairs. In the air, a 
distance separation requirement of 4 nmi is imposed 
between all aircraft pairs (according to [18]) and 
converted into time scale via the speed of the leading 
aircraft of each pair. At the runway, wake vortex 
separations are imposed between all aircraft pairs. In 
this study, altitude restrictions are assumed to be 
satisfied at all times. 

A constraint on allowed amount of speed change 
on flight segments between two waypoints is added 
to prevent steep speed gradients. No more than 20% 
speed difference is allowed between two consecutive 
waypoints. 

For this application, the objective function is 
adapted to the model of the Los Angeles terminal 
airspace defined previously. The objective described 
by Equation 8 is updated for the application and this 
is shown in the following Equations 9, 10 and 11. 

𝑓! 𝑥 =
𝑓!  !"#!        𝑖𝑓  𝑗  𝑖𝑠  𝐷    
𝑓!  !"#            𝑖𝑓  𝑗  𝑖𝑠  𝐴      

!

!!!

                                                  (9) 

 

 

 

For each scenario 𝜔!, 

If j is D: 

𝑓! 𝑥, 𝜉! = 𝛼!max r!  !"# − 𝑡!  !"#  ,0
!

!!!

+ 𝛽!max 𝑡!  !"# − 𝑟!  !"#, 0                 (10𝑎) 

If j is A: 

𝑓! 𝑥, 𝜉! = 𝛼!max r!  !"# − 𝑡!  !"#  ,0
!

!!!

+ 𝛽!max 𝑡!  !"# − 𝑟!  !"# , 0                   (10𝑏) 

For each scenario 𝜔!, 

If j is D: 

𝑓! 𝑥, 𝜉! = 𝛾!max d!  !"#$ − 𝑐!  !"#!  ,0
!

!!!

+ 𝛿!max 𝑐!  !"#! − 𝑑!  !"#!, 0         (11𝑎) 

If j is A: 

𝑓! 𝑥, 𝜉! = 𝛾!max d!  !"# − 𝑐!  !"#  ,0
!

!!!

+ 𝛿!max 𝑐!  !"# − 𝑑!  !"#, 0               (11𝑏) 

The earliness cost parameter 𝛼!  is fixed to a 
large value when 𝑗 = 𝐷  to avoid early departures 
from release, i.e. from runway. For experimental 
purposes, the earliness cost 𝛼!  for arrivals will be 
varied. Moreover for simplicity and for both arrivals 
and departures, late release times and early or late 
completion times are not penalized, i.e. if 𝑗 = 𝐴 or 
𝑗 = 𝐷, 𝛽! = 𝛿! = 𝛾! = 1. However, delaying aircraft 
in the sky, i.e. creating airborne delay, is more 
expensive than delaying aircraft on the ground, i.e. 
creating ground delay. Therefore, the penalty on late 
arrivals at the runway is set such that the cost of 
creating airborne delay for arrivals is twice that of 
creating ground delay for departures, i.e. if 𝑗! = 𝐴 
and 𝑗 = 𝐷, 𝛿!! = 2𝛽!. 

Experiment Setup  
The experiment setup presents the different test 

case simulations that are used.  

Experiment Overview 
Different simulations are designed in this proof-

of-concept study to compare the spatial and hybrid 
separation methods with and without the presence of 



uncertainty. Total and individual flight times are 
computed as well as delays and number of controller 
interventions to compare the separation methods.  

Stochastic and Deterministic Characteristics 
The proposed methodology is stochastic in 

nature but it is possible to setup and simulate 
deterministic conditions. In the test case without 
uncertainty, the number of scenarios of each stage in 
the multi-stage formulation is set to zero (i.e. 
𝑚! = 𝑚! = 0) and no errors are added to the flight 
times. However when sources of uncertainty need to 
be integrated, the SAA parameters 𝑀 , 𝑚!  and 𝑚! 
can take a range of different values. In this section, 
values are given without discussions but in the 
following section simulations using different 
numbers of scenarios will be investigated. Table 3 
presents the values of the algorithm parameters that 
are used for the deterministic and stochastic settings.   

Table 3. Experiment Setup 

Conditions 
Parameters 

Deterministic Stochastic 

𝑀 1 50 
𝑚! 0 100 
𝑚! 0 100 

In the case of stochastic settings, error sources 
sampled from probabilistic distributions are added to 
both arrival and departure flight times. In stage 2, 
these are added to the release dates, i.e. at fix FIM for 
arrival flights and to ETDs for departure flights. In 
stage 3, they are added to the due dates, i.e. at RWY 
for arrival flights and at WPT1 for departure flights.  

Results 
Comparison of separation methods in the 
deterministic case 

 In this section, spatial and hybrid separation 
methods are compared under deterministic 
conditions. As mentioned previously, no early 
departures are allowed at release, i.e. at the runway, 
and a penalty is setup for early arrivals at release. In 
the case of spatial separation where only indirect 
routes are flown, the total computed flight time for 
the set of 14 aircraft is equal to 6975.88s with 
individual flight times of 440.06s for each departure 
and 525.29 to 587.0s for arrivals. In the case of 
hybrid separation, the total computed flight time 
obtained is 5639.9s with individual flight times of 

314.64s for each departure and 467.9 to 476.78s for 
arrivals. In this case, to meet runway separation 
constraints, arrivals slow down whereas departures 
are merely ground held. Individual departure flight 
times show that the optimization clears departures to 
takeoff only when a route is found to be flown at 
maximum speed of the speed range authorized. With 
the hybrid separation, a total flight time reduction of 
19.5% is achieved with an individual flight time 
reduction of 125.42 seconds for departures and 
individual flight time reductions up to 119.1 seconds 
for arrivals. It is worth mentioning that in the hybrid 
case, the optimization assigned all flights to direct 
routes. 

Comparison of separation methods in the 
stochastic case 

Schedules are sensitive to uncertainty and 
schedule robustness is required in operations. 
Therefore stochastic conditions are setup in this 
section using the algorithm parameter values 
provided in Table 3. Error sources drawn from 
normal distributions are added to both arrival and 
departure flight times. Based on common values used 
as desired prediction accuracy in previous work 
conducted on arrival trajectory [33,34], the arrival 
time error has a mean of 0 seconds and a standard 
deviation of 30 seconds. For the departure time error, 
a mean value of 30 seconds and a standard deviation 
of 90 seconds is setup based on the departure Call 
For Release, three-minute time compliance window 
[35].  For this experiment, the penalty values are the 
same as the ones used in the deterministic simulation.  

The optimization computes global solutions for 
each repetition. The flight time values provided as 
results correspond to the largest savings obtained for 
all repetitions. In the case of spatial separation where 
indirect routes are flown, the total computed flight 
time for the set of 14 aircraft is equal to 6842.72s 
with individual flight times of 440.06s for each 
departure and 525.29s for arrivals. In the case of 
hybrid separation, the total computed flight time 
obtained is 5677.95s with individual flight times of 
314.64s for each departure and 467.9 to 489.0s for 
arrivals. For the hybrid strategy, the flight time 
difference for arrivals is due to speed change 
imposed to respect separation requirements between 
arrivals and departures at waypoints that are shared 
between flows. With the hybrid separation, a total 
flight time reduction of 17.0% is achieved with an 



individual flight time reduction of 125.42 seconds for 
departures and individual flight time reductions up to 
57.39 seconds for arrivals. It is worth mentioning that 
in the hybrid case, the optimization assigned all 
flights to direct routes. 

With the addition of uncertainty, additional 
delays are imposed to maintain required separation. It 
was found when comparing the aircraft separation 
methods that the hybrid separation method 
introduced a global flight delay amount of 46.9 
seconds associated with two controller interventions, 
i.e. two speed clearances.  

Impact of early arrivals 
Allowing early arrivals can increase flexibility and 
reduce delay. In this section, the impact of early 
release of arrival flights is investigated by varying the 
penalty cost 𝛼!   of arrival flight 𝑗 under the previously 
described stochastic settings. The goal is to 
understand the effects on delay and controller 
intervention of allowing early release for arrival 
flights in the presence of uncertainty. In real world 
operations, the penalty cost 𝛼!   on early release of 
arrival flight 𝑗  represents the ability of Center to 
speed up arrivals and get to FIM earlier than their 
original estimated unimpeded entry time. To present 

the results, distributions of delays and numbers of 
controller interventions are drawn using Box and 
Whisker plots respectively in Figure 2 and 3. The 
delay is computed as the sum of individual aircraft 
flight delay for each scenario, where flight delay is 
computed as the difference between computed flight 
time (global value) and expected flight time of each 
scenario when flying at minimum speed. The number 
of controller interventions is computed as the number 
of times speed changes occur to avoid separation 
losses between aircraft for each scenario. In each 
following set of graphs, resulting distributions of 
each separation methods, i.e. S for spatial and H for 
hybrid, are computed for a fixed value of the early 
release penalty cost for arrival flights. Four different 
penalties are investigated and they are denoted 
“None”, “Low”, “Medium” and “High”. “None” 
refers to the case in which early release of arrivals are 
allowed (i.e. no penalty) whereas “High” refers to the 
case in which early release of arrivals are forbidden 
(i.e. high penalty). “Low” and “Medium” are 
intermediate penalty cases. “Low” reflects the case in 
which arrival flights can be released early unless 
delay is induced for departure flights. “Medium” 
illustrates the case in which no arrival flights can be 
released early unless reduced delay is computed.  

 

 
Figure 3. Delay distributions under uncertainty  



 
Figure 4. Controller intervention distributions under uncertainty  

For all box plots, the box extends from lower 
to upper quartile value of the delay and controller 
intervention data with a red line at the median. The 
bottom and top horizontal lines represent the 
whiskers and they extend the box to show the range 
of the data from minimum to maximum 

From the results it can be observed that when 
early release of arrival flights are allowed, i.e. 
“None” case, the spatial separation method 
introduces more delay and more controller 
interventions than the hybrid separation method. 
However results show that as the early release of 
arrival flights gets more and more penalized, the 
trend reverses with lower values of delays and 
lower numbers of controller interventions. For the 
“Medium” case, both separation methods have 
similar delay and controller intervention 
distributions. However, for the “High” case, the 
hybrid separation method introduces more delays 
and more controller interventions than the spatial 
separation method. Therefore, the results suggest 
that the hybrid separation method surpasses the 
spatial separation method for all cases except the 
“High” case by creating fewer delays and less 
number of controller interventions. In real world 
operations, the results show that to obtain fewer 
delays and less number of controller interventions 
in the terminal airspace when using the hybrid 
separation method, the Center should not speed up 
all aircraft before getting to fix FIM but only the 
ones for which benefits are obtained.  

Analysis 
Observations drawn from the results show that 

when using the hybrid separation method, 
significant flight time savings (total and individual) 
could be obtained even in the presence of 
uncertainty. However, both methods introduce 
delays associated with uncertainty to respect aircraft 
separation requirements. Moreover, because of 
waypoints shared by arrival and departure flows 
when flying direct routes, the number of controller 
interventions increases when using the hybrid 
separation method to make sure aircraft are well 
separated in particular at these shared waypoints. 
Future work is required to investigate how the other 
penalty costs introduced in the optimization 
formulation would affect the amount of delay and 
workload added by such flow interactions. 
Sequencing rules or additional speed constraints 
could be imposed to aircraft prior to flying by the 
shared waypoints. A further penalty cost variation 
analysis could give better insights to obtain lower 
delays and lower controller workload when using 
the formulation presented in this paper. For 
example, if late completion times were penalized, 
how would the number of controller interventions 
be affected? 

Assessment of SAA Performance 
The proof of concept described previously uses 

fixed parameter values for the implementation of 
the Sample Average Approximation methodology. 
This section presents the investigation of different 



parameter values to understand how they affect the 
performance and the results of the SAA 
methodology. Because results show that greater 
savings could be obtained if aircraft fly direct 
routes, the hybrid separation method is 
implemented in this statistical analysis. In the 
preliminary, the statistical bounds are derived for 
the problem. Then the computation setup details the 
values of the parameters tested. Finally, 
computation tables and analysis of the statistics are 
provided. The goal is to determine the number of 
scenarios needed to get robust optimal solutions for 
a fixed number of repetitions when applying the 
proposed methodology in reasonable computation 
time. 

Statistical Metrics  
To solve the stochastic program, the SAA 

methodology prescribes to solve 𝑀  SAA 
independent problems with 𝑚! and 𝑚! independent 
samples in each. Denote 𝑣∗and 𝑣  as the optimal 
objective function of the true problem and of the 
SAA problem, respectively. For each replication 
𝑚,  𝑚 ∈ [1,𝑀], the program computes 𝑣! and 𝑥! 
that respectively refer to the value of the optimal 
objective function and to the solution of the 𝑚th 
replication. According to Ahmed and Shapiro in 
[28], an unbiased estimator of 𝔼[𝑥!]  can be 
described by the following quantity: 

𝑣! =
1
𝑀

𝑣!                                                                    (12)
!

!!!

 

Because 𝔼 𝑣! ≤ 𝑣∗ by definition, Equation 9 
is a statistical lower bound to 𝑣∗. An estimate of the 
variance of the lower bound estimator can be 
expressed as: 

𝑆𝑣𝑀 =
1

𝑀(𝑀 − 1)
𝑣𝑚 −   𝑣𝑀   2    

𝑀

𝑚=1

                  (13) 

These formulas are computed in step B. of the 
SAA methodology. 

To compute statistical upper bounds of 𝑣∗ , 
consider a feasible solution 𝑥! of the problem at 
repetition 𝑚 . This procedure is applied in step 
A.(b).i of the SAA methodology. To compute an 
estimate of the true objective value 𝑔! 𝑥!  at point 
𝑥! for repetition 𝑚, one can generate independent 

samples of size 𝑚!′ and 𝑚!′ and compute the 
quantity defined in Equation 11. In this work, 𝑚!′ 
and 𝑚!′ are numbers of extra-scenarios of type 𝑟 
and  𝑑 and 𝑚!

! = 𝑚!′. 

𝑔! 𝑥𝑚 = 𝑓! 𝑥
𝑚                                                                                 

+ 𝑝!!(𝑓! 𝑥𝑚, 𝜉!
𝑚𝑟′

!!!

+ 𝑝!!𝑓!(𝑥
𝑚, 𝜉!))

𝑚𝑑′

!!!

                                          (14) 

An estimate of the variance of the upper bound 
estimator can be expressed as: 

𝑆!!(!!)

=
1

𝑚!′(𝑚!′ − 1)
𝑔(𝑥) −   𝑔!(𝑥!) 2    

!!!

𝑚=1

                          (15) 

Finally, to characterize the differences between 
upper and lower bounds, the optimality gap is 
computed for each repetition in step C. of the SAA 
methodology along with an estimated variance. For 
each solution 𝑥!  , 𝑚 = [1,𝑀] both quantities can 
be expressed as: 

𝑔! 𝑥! − 𝑣!                                                         (16) 

and 

𝑆𝑣𝑀
! + 𝑆!! !!

!                                                         (17) 

Setup 
In this section, an experiment setup is defined 

to compute the statistical bounds derived previously 
in three different cases. The number of repetitions is 
fixed to 50 and the number of extra-scenarios 𝑚!′ 
and 𝑚!′ are fixed to 10000. Each test case explores 
a different number of scenarios 𝑚!  and 𝑚!  such 
that 𝑚! = 𝑚!. Table 4 summarizes the values of 
parameters tested. 

Table 4. Experiment Setup 

Parameters Case 1 Case 2 Case 3 

𝑀 50 50 50 
𝑚! = 𝑚! 10 100 1000 
𝑚!
! = 𝑚!′ 10000 10000 10000 



The optimization is performed on the Los 
Angeles terminal airspace proof-of-concept 
stochastic settings where the hybrid separation is 
implemented to separate the set of 14 aircraft 
presented previously. To save computation time, 
multi-threading is implemented. Because all 
repetitions are independent from one another, one 
thread is assigned to one-repetition computations.   

Results  
For each case, the SAA methodology 

described in the previous section is applied, 
statistical bounds are computed at each repetition 
and respective case computation times are recorded. 
In order to compare the different test cases and 
show the effect of increasing the number of 
scenarios (𝑚! = 𝑚! ) on the results, a Box and 
Whisker plot is drawn to represent the variance 
distribution of the results of each test case. The 
resulting plot is presented in Figure 4. For all box 
plots, the box extends from lower to upper quartile 
value of the variance with a line at median. The 
bottom and top horizontal lines represent the 
whiskers and they extend the box to show the range 
of the data from minimum to maximum. 

Figure 5. Variance Distributions  
Two main observations can be drawn from 

Figure 4. First, the visible data spread between 
maximum and minimum decreases as the number of 
scenarios increases. It is 84 when the number of 
scenarios is set to 10 whereas it is 30 when the 
number of scenarios is set to 1000. Second, the 
median decreases from 184 to 174 when the number 
of scenarios increases from 10 to 1000. Therefore, 
Figure 4 shows that results are more robust for 

larger numbers of scenarios. Additionally, Table 5 
presents the computation times of the three different 
test cases.  

Table 5. Computation Times  

 Case 1 Case 2 Case 3 

Computation 
Time (seconds) 159.52 315.02 1936.26 

Case 1 with 10 scenarios is the fastest to run 
(~2.6 min) whereas case 3 with 1000 scenarios is 
the longest to run (~32min). Although Figure 4 
shows that case 3 has the least dispersed results, it 
takes about 32 minutes to run. From case 2 to case 
3, increasing the number of scenarios enables a 
4.6% median decrease of the variance. However, 
this requires a 6x computation time increase. 
Therefore for this application, case 2 is the best 
setup and presents a good compromise between 
variance result and computation time.  

Case 2 spread is about 50, this tends to cost 
uncertainty of results from previous section. Table 6 
presents detailed statistics computations of test case 
2 when applying the SAA methodology. For 
simplicity and illustration purposes, results 
corresponding to a few repetitions, i.e. 0th, 10th, 20th, 
40th, and 49th, are provided. In this table, the first 
column is the repetition number, the second column 
is the estimated upper bound of the objective 
function with estimated variance displayed in 
column three. Column four is the estimated lower 
bound of the objective function, column five 
displays the estimated optimality gap along with its 
variance in column six. The two last quantities 
underneath the table correspond to the overall 
repetition lower bound of the objective and its 
associated variance. 

Table 6. SAA Methodology for Case 3 

𝒎 𝒈! 𝒙𝒎  𝑺𝒈!(𝒙𝒎)
𝟐  𝒗𝑵𝒎 Gap Var 

0 19957.5 141.4 19859.9 66.2 200.6 

10 19916.5 108.5 19810.4 115.7 167.7 

20 19902.7 109.9 19829.6 96.6 169.1 

40 19899.5 119.2 19830.4 95.8 178.4 

49 19893.4 127.9 19807.9 118.3 187.2 



𝒗𝑴 =19826.2 

𝑺𝒗𝑴
𝟐 =59.2 

Analysis 
The results of the statistical bounds 

computations show that using large numbers of 
scenarios produces more robust results but at the 
expense of large computation times. However, it 
was found that decent robustness could be found in 
reasonable computation time for the reference 
schedule and stochastic settings considered. In 
particular in the proof of concept study, the number 
of scenarios was set to 100.  According to variance 
results of this section, results obtained previously 
can be qualified as a good compromise between 
robust results and computation time. Future work is 
required to analyze results for which larger numbers 
of repetitions are used. 

Summary, Conclusion and Next Steps 
In this section, a summary of the work 

accomplished is provided as well as concluding 
remarks and next steps for future research. 

Summary 
This work contributes to stochastic scheduling 

optimization in the field of air traffic management. 
In the terminal airspace, integrated departures and 
arrivals have the potential to increase operations 
efficiency. An alternative method to past research is 
presented in this paper to solve the integrated 
arrival departure operations problem under 
uncertainty. The objective was to provide a 
stochastic optimization formulation that solves a 
routing and scheduling problem for terminal 
airspace traffic and produces optimal solutions with 
minimal runtime. 

To accomplish the objective of this work, a 
scheduler was built to compute schedules for 
terminal airspace waypoints that are shared by both 
arrivals and departures. Inspired from 
manufacturing operations, the scheduler is based on 
a machine job-shop scheduling problem 
formulation in which probabilistic release and 
runway dates were investigated. To separate 
aircraft, wake vortex separation requirements were 
enforced at the runway and a temporal control 
strategy was implemented through the usage of 

speed varying constraints. A multistage stochastic 
programming approach was used to solve the 
problem and solutions were obtained by solving 
several sample average approximation problems. A 
proof-of-concept was accomplished by applying the 
scheduler to arrival and departure flows in the Los 
Angeles terminal airspace.  

Scheduling and routing results showed that 
allowing aircraft to share waypoints and fly more 
direct routes may allow greater flight time savings. 
Results also demonstrated that when considering 
flow interactions between arrival and departures, 
additional delays requiring controller interventions 
were needed to maintain safe separation between 
aircraft. Because approximate solutions were 
computed, a statistical analysis was conducted to 
demonstrate that the proposed methodology does 
not require too many scenarios, i.e. more than 100 
scenarios, to produce robust results. A 
multithreading method was implemented to help 
save computation time. Moreover it was shown that 
robust results, i.e. schedules and routings, could be 
obtained with a reasonable amount of uncertainty in 
computation times less than 3 minutes.  

Operational Implications  
This study showed that the methodology 

proposed in this paper is promising to improve 
operation efficiency in the Los Angeles terminal 
airspace by integrating departures and arrivals. The 
developed method can be applied in a fast time 
fashion and determines if benefits exist for different 
input schedules. Such tool shows promising future 
to help support decision-making. 

Next Steps 
In order to understand further the benefits of 

the proposed methodology, work will be conducted 
to compare results of the proposed scheduler with 
genetic-algorithm based schedulers. Future work is 
also necessary to evaluate and test the proposed 
methodology further. In particular, a penalty-
variation analysis is required to understand how the 
penalties introduced in the problem formulation 
affect delays and controller interventions. It might 
also be interesting to integrate schedules from the 
Center prior to handoff at the meter fix to the 
TRACON. Furthermore, future research steps will 
perform a traffic-variation analysis in order to 



understand the algorithm behavior in particular 
when scheduling and routing dense traffic 
scenarios. Additionally, this methodology is being 
extended to the surface operations. Integrating 
surface movements to the current model would 
allow more continuous scheduling and routing and 
is expected to offer additional system benefits.  
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Appendix I 
Nomenclature 

𝐴𝐶 Set of aircraft 𝑗, 𝑗 ∈ 𝐴𝐶 



𝐶 Set of weight class p, 𝑝 ∈ 𝐶 =
{𝐻, 7, 𝐿, 𝑆} 

𝑂 Set of operations 𝑞, 𝑞 ∈ 𝑂 = {𝐴,𝐷} 

𝑇 Aircraft type, 𝑇!" , 𝑝 ∈ 𝐶, 𝑞 ∈ 𝑂 

𝐾 Set of aircraft type, 𝐾 = {𝑇!" , 𝑝 ∈
𝐶, 𝑞 ∈ 𝑂} 

𝐼 Set of waypoints 𝑖, 𝑖 ∈ 𝐼 

𝑅𝑊𝑌 Waypoint runway 

𝑟! Release time of aircraft 𝑗  

𝑝!" Processing time at waypoint 𝑖  of 
aircraft 𝑗 

𝑑! Due date of aircraft 𝑗 

𝑡! Starting time of aircraft 𝑗 

𝑐! Completion time of aircraft 𝑗 

𝑓! Exit time of aircraft 𝑗 

𝜆 Relative objective weight 

𝛼! Earliness of aircraft 𝑗 at release 

𝛽! Tardiness of aircraft 𝑗 at release 

𝛾! Earliness of aircraft 𝑗 at exit 

𝛿! Tardiness of aircraft 𝑗 at exit 

𝑟!! Perturbed release time of aircraft 𝑗 

𝑑!! Perturbed due date of aircraft 𝑗 

𝜔! Scenario of time type 𝑞, 𝑞 ∈ {𝑟,𝑑} 

𝜉!! Perturbation of time type  𝑞, 𝑞 ∈ {𝑟,𝑑} 

𝜉! Vector of perturbations of scenario of 
time type 𝑞, 𝑞 ∈ {𝑟,𝑑} 

𝑚! Number of scenarios of time type 𝑞, 
𝑞 ∈ {𝑟,𝑑} 

𝛺! Set of scenarios time type 𝑞 , 𝑞 ∈
{𝑟,𝑑}, 𝛺! = {𝜔!! ,… ,𝜔!!} 

𝑋 Set of all possible aircraft sequence 𝑥, 
𝑥 ∈ 𝑋 

𝑆𝐴𝐴 Sample Average Approximation 

𝑀 Number of repetitions 𝑚, 𝑚 ∈ 𝑀 
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