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This paper characterizeswind forecast errors and evaluates their impact on times of
arrival estimation within a few hundred miles of the airport The specific wind forecast
product analyzed in this paper is the Rapid Update Cycle -br forecast with 40km
resolution. The forecast data is compared to the dataeported by the aircraft using the
Aircraft Communications Addressing and Reporting SystemThe dataare compared for the
complete yearof 2011 by analyzing arrival operations within 200 nmi of the Phoenix Sky
Harbor International Airport. The paper describes two metrics: (i) wind magnitude metric,
and (ii) wind uncertainty metrics. These metricsare defined in terms of the effect the wind
has on thea i r c rEsatimatéd STime-of-Arrival (ETA) during its arrival phase of flight.
Both metrics are computed for all thehourly forecastsbetween 6am to 10pmiocal time in
the year 2011. Thestudy illustrates the seasonal dependence of wind and wind uncertainty.
It serves as the basis for selecting test days for NextGen concept evaluationsimulations.

I. Introduction

ASA and the FAA have been involved in extensive efforts to develop advanceeptantechnologies, and
procedures for the Next Generation Air Transportation System (Nex!Geér® objective of these research
efforts has been to improve the capacity, efficiency, and safety in theyemetation National Airspace System
(NAS). Improwements come in the form of more accurate and autonomous onboard navigational capabilities based
upon the Global Positioning System, more accurate surveillance capabilities such as Automatic Dependent
SurveillanceBroadcast, advanced communication capadslitsuch adData Communicationsimproved vehicle
designs, andmproved airtraffic operations realized through advanced automation systems. A significant portion of
the NextGen research is aimed at (i) developing grdasdautomation systems to assist controllers in strategic
planning operations, (ii) developing controller decision support todisctically separate and space the traffic, and
(iii) developing flightdeck automation to assist pilots in accomplishing aifeenerging and spacing operatiéns
A conceptfor future highdensity terminal air traffic operations that has bpesposedby the Airspace Super
Density Operations (ASDO) researchers at NASPhe concept includes five commponents two strategic
plaming elementdn the form of Extended Terminal Area Routingnd Precision Schedulingas well asthree
tactical control elements in the form dferging and SpacingTactical Separation, and Gffominal Recovery.
Successful implementation of the Precisi@mé&lulingcomponentequires the following questions be answered
1. What is the range dkasibleflight times for an aircraft to transit between two points along its flight path
(e.g.,from top-of-descent tahe meterfix andfrom themeterfix to the runwaythreshold?
2. What is the accuracy with which an aircraft caeeta scheduledtime-of-arrival (i.e., the absolute timing
errory?
3. What is the accuracy with which an aircraft can maintainsagfiration with respect to a leading aircraft
(i.e., the elative timing error}
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From the foregoinglist of key questionsthe range offeasible flight time depend upon the following
characteristics of tharrival operation

1 Aircraft performance characteristics

1 Cruise and descent speeds selected by ther ¢ r a f tfliylg mamagénremystem

1 Terminal area route geometry

1 Observeditmospheric conditions such as temperature and vetuds

Similarly, thetime-of-arrival accuracy and seeparatiorperformancelependupon the following:
1 Uncertainty associated with tipeedictedatmosphericonditions
1 Advisories fromair traffic controllers both manual as well dhoseassisted by automation tools
1 Currentday andnextgeneratioraircraft navigatiorcapabilities

Not surprisingly,the prediction of atmospheric conditions and its associated uncer{amatst importantlythe
prediction of windsaloft) is a key driver in thesuccessful implementation of Precisioch8duling.Therefore, he
current workinvestigateshe time-of-arrival uncetainty which resultsfrom the uncertainty associated with wind
forecast errors This paper specifically focuses on Phoeni8ky Harbor International Airport (PHX)arrival
operationsThe Rapid Update CyclgRUC) forecast products generated ttne National Oceanic and Atmospheric
Administration(NOAA) is used to define the predicted winddrcraft CommunicatiorAddressingand Reporting
System(ACARS) reports from participatingircraftare used tomodelthe wind forecast errotsThe data is further
described in Sectiol. The PHX terminal airspace used for analysis is described in Sétti@efinitions of wind
magnitude and wind uncertainty metrisased upon timef-arrival estimatesre provided in SectiotV. Finally,
the data analysis results are presented in Se¢tiandsome initial conclusions are discussadectionVi.

Il. Data Sources

The winderroris defined as the deviation between the acfmath) wind vectorsand the predicted (forecasted)
wind vectors Therefore the statistical properties of a large number of observed deviations ar¢éousediel the
probability distributionof the wind uncertainty Sampletruth wind sets are generated from these statistics and used
to investigate t he -ofrarnval Thisreguiras the following datat uth wind dataraed (i)
forecast wind data. In this researehind reportsobtained fronequipped aircrafareused as th&uth data and wind
predictionsobtained fromNOAA are used as the forecast dafthese data are described in more detail in this
section.

A. Truth Wind Reports

Many commercial aircraft operating today are equipped with sensors that can provitiengealeather
observations (primarily winds and temperatures) via radio downlinks. The Mktgioal Assimilation Data Ingest
Syst emb6s ’autttiad @rjraft dataset provideEARS® data obtained from many U,SEuropean and
Asian airlines. Each participating aircraft provides position and wind informagioapproximately oneninute
intervals. Since this data is obtained fraommercialaircraft flying through the airspacthe ACARS datarenot
available for arbitrary locatianand times. It is only available for those spatial locations and times thagiticeaft
actuallywas present inMoreover,not all aircraft report this data. However, a large amount of historical datal is
available to characterize the statistics of the vénors Figurel showsa sampleof ACARS wind reportocatiors
from aircraft operating in thBhoenixterminal areaPHX is located at the origin of this pl&ach small black arrow
represents a single ACARS report reeei duringbetwea January 1, 2011 and January 15, 201e arrival and
departure routes are clearly marked by a higher density of ACARS reports.
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Figure 1. Sampleof ACARS Wind Reports from Aircraft in the PhoenixTerminal Area

B. Forecast WindData

The NOAA provides predictions ofwind and atmosphericonditions for the entire United States. These
forecastsare obtained through a weather product referredigoRUC. RUC is anoperational weather prediction
system covering North America that upekon a hourly basis. It consists of a numerical forecast maael an
analysis/assimilation system to initialize that modRJC provides1-18 hour forecasts, updated hourly uséaither
40-, 20, or 13km horizontal resolutiomand 50 vertical levelsThis study uses the 4dn RUC Xhour forecast
(RUC-40) previously used by air traffic management applicatidbsprovides the predicted North and East
components of the wingelocity. Unlike the ACARS data, BC data is available over fixed grid of spatal
locations.A bilinear interpolation schems usedto compute the wind predictions for spatial locatiombetween
the RUC grid points.

C. Potential Truth Wind Data

The ACARS wind reports represent individualind conditions They are not suitable for somprehensive
analysis of wind error on timef-arrival accuracy since they are spatial and temporally spaReference7
describes an approach to construct a sgatigporally correlated model of wind error from a set of truth wind
reports and forecast wind data. Application of this technique to a partwudrforecaste.g, theRUC-40 1-hour
forecastfor March 4, 2005t 062)is used to create a set of potential truth witedathat could have been present.
This set of potential windare used to investigate the range tohesof-arrival that would have been observed.
Throughout the remainder of the paper, sptiopoglly correlated truth winds refer to gepotential set of truth
winds corresponding to a particular wind forecast based upon the historically observed wind errors.

D. Limitations and Applicability

This study compares the RWUMD wind predictions and ACARS wd reports from 2011 in order to remain
consistent with previous analyses performed for a series of ongoing NASA listierloop simulations of PHX
arrival operation&? These simulations used traffic and wind scenarios constructed from 201 Thiatsind errors
at PHX are assumed &hibit similar yearto-yearseasonal variationg\dditional workis requiredto determine the
extent to which the wind errors at PHX are similar to thmresentt other leations around the NAS

In March 2012, NOAA replaced the RUC forecast model with the newer and more accurate Rapid Refresh
(RAP)™ forecast modelAlthough not part of the results presented here, later comparison of RAP wind predictions
to the ACARS wind reports shows markedly wedd wind errors for altitudes above FL2@0discussion of this
improvement is provided in subsequent sections.
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Finally, dthough the current paper focuses on wind modelihg sameapproach is applicable to other
atmospheric data such as temperature@edsure. In that context is worth noting that both ACARS andU
provide temperature and pressure diataddition to wind components

[ll.  Arrival Route Modeling

Figure2 andFigure3 show theEast flow and Wesdrrival routesespectivelyin the Phoenixterminalareaused
in this study Each of the arrival routes is shown in a different colable 1 lists the combinations ahe Area
Navigation RNAV) Standard Terminal Arrival RoutédSTAR), en route transitiofixes, andarrival runways. The

en route transitiongrere chosen teepresenthe longest route from each direction. Runways 08 and 26 were used to

represent the other parallel runways at PHRunways07L/07Rin East Flow aiport configurationsand 25L/25R

in West Flow airport configurationsespectively
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Figure 2. PHX East Flow Configuration
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Figure 3. PHX West Flow Configuration
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Table 1. STARSs, Fixes, and Runway Combinations

RNAV STAR TRANSITION FIX ARRIVAL RUNWAY
GEELA6 BLH 08
GEELA6 BLH 26
MAIERS BLD 08
MAIERS BLD 26
KOOLY4 SSO 08
KOOLY4 SSO 26
EAGULS GUP 08
EAGULS GUP 26

150

IV. Definition of Wind Metrics

This section defines the wind magnitude and wind uncertainty metrialyzedn this study These metricare
based uporthe ETA along each routédrom the en routetransition fix to the runway threshol@herefore, it is
important to first identify the methotbgy used to compute the ETA.
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A. ETA Computation

A piecewise linearindicatedairspeed(IAS) profile is developed from the following pointdong each ofthe
routesshown inFigure2 andFigure3:
280KIAS farther than 20Gimi
280 KIAS at 200 nmi
270KIAS at 80nmi
240KIAS at 40nmi
170 KIAS at 5nmi (typical final intercepspeed)
140KIAS at Onmi (typical final approach speed)

The locations are expressed as distances to travel along thegireytpath distance)lhis speed profile was
formulated as a reasonable approximation of the published speed constraints and siaerdding procedures at
PHX. They are similar to the observed speed profiles at other airporbetween therescribeddistancesthe
airspeeds arénearly interpolatedit should be noted that the full tired-arrival error will be a combination ahe
error due to the differences between the modeled airspeed profile and the actual profile as well as the errors due to
the predicted atmospheric conditions versus the actual conditions.

The following approach ithenused to computa set oETAs alongeach route:

1 ConvertthelAS profile to atrueairspeed(TAS) profile atthe prescribegathdistances
1 Interpolate fothe TAS as afunction ofpathlength betweethe prescribed path distances
91 Discretizethe horizontapath at 3nmi intervak
1 Calculatethewinds atthe 3 nmi intervalsfor threesets of wind data
o Zerowind
0 RUC-40forecastwind
0 Set ofsamplerandomspatio-temporallycorrelatedwind values
1 For each scenariopmputethe ground speed athe 3 nmi intervalsby combining the prescribedue
airspeedrofile and theassociateavind field
1 Computetransittime over each3 nmi segmentisingthe computedground speed

=A =4 =4 -8 -8 -9

The ETA corresponding tthe zero-wind scenario is represented @$y¥ ; the ETA corresponding tthe
RUC-40 forecast windis represented a® "% . The 8" and 9% percentile ETAs for theset of sample
spatietemporally correlated wirghre represented &Y ~andOoY _, respectively.

B. Wind Magnitude Metric

The Wind Magnitude Metric WMM) characterize the nominal strength of the wirid terms of its impact on
the ETA irrespective of the accuracy of the forecast. It is etquethat winds affect the ETAe strongerthe wind
magnitudethe bigger thalifference between th® ¥ andO"Y . However, he ETA difference
will be different for each rout®/inds aloftwill make flights on some routes travel faster and flights on the opposite
routes travel slower. Fohis study a scalar metric that encompasses all routes is soughfolltneing definition
satisfies the above requirements and can be appledaibitrary number ofoutes

w0 0

P oY [ON §
: ‘ pTT 1

oY

where "Qs a particular route, andé is thetotal number of route The absolute value of the numerator prevents
cancellation of wind effects on opposite routes; the normalizatydhe denominator treats variations along short

and longr routes appropriately; and the average over the number of routes prevents the expression from assuming
very large values for large numbeaf routes. The WMMcanbe interpreted as the averggercentagevariation of

ETA with respect to the zero wind ETA for a given setaites Though the WMM is computed usingsaecific

wind forecast producthamely the RUC-40 1-hour forecastit is expected to be largely invariant to therticular

wind forecast product, since all wind forecast produmts intended to reflecsimilar large scale changes in
atmospheric conditions

C. Wind Uncertainty Metrics
TheWind Uncertainty Metric \WUM) characterizethe accuracy of the wind forecast products in term&oA
variability. Again, a scalar metric that encompasses all routes is sought. Two different metgealaatedn the
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current research. The WUMs are based on the statistics of the ETA distributions obtained sievraf spatio
temporally correlated tith winds generated B3000Monte-Carlo simulatiorruns conductefbr all routes and each
RUC-40 1-hourwind forecast The ETA variation in each Mor@arlo simulation is used as a measure of the wind
uncertainty. The variation is characterized using two diffemegasures(i) the 90-percentile interquartile range, and
(i) the standard deviation. The former is suited &ll statisticaldistributions, whereas the latterbestsuited for
normal distributionsThe WUM definitions are given below:

o p OV oY
L ~ 2
w Y0 5 o0y pTT 2
o p oY
L 3
WY T O% pTITT ©)

This wind uncertainty metric specifically focuses on the impact of the wind errotseatotresponding ETA
variation,i.e., ETA eror. An alternative formulation of the wind uncertainty metric could investigate the impact of
the wind errors on the corresponding irderival error (i.e., the differential ETA error between two successive
flights). This impact may be the subject of future analyses.

V. Results

Results obtained from analyzing the R4QC 1-hour wind forecastand ACARSwind reportsin the PHX
terminal aredor the entire year of 2011 are presented in this secisrdescribed in Rerence?, the wind error
statistics are determined using ad&y moving averagm order to capture the seasonal variation of the atmospheric
conditions and theiassociated errors.

A. Variation of Wind Uncertainty with Altitude

Figure4 shows the variation dhe North and East wind erroabservedn the PHX terminal areas a function
of altitude.These wind errorarethe difference between the ACARSNd reports and the corresponding R4QG
1-hour wind forecastdor the same time, location, and altitudédese results are consistent with other studies that
have found sinitar wind errormagnituds.***2 Overall there is ncstatisticaldifference between the North and East
wind erros. For all altitudes, the mean wind err@rot shown)is found to beeffectively zero (i.e., the RU@O0 1-
hour forecast is unbiased faufficiently large data setskor altitudesbelow FL200, the standard deviati®of the
North and Easwind erros are approximately 510 knots Meanwhile, br altitudes above FL200, tretandard
deviations of théNorth and East wind errors increase rapihyl 520 knots
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Figure 4. Variation of RUC-40 ForecastWind Errors with Altitude
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As previously mentionedNOAA replaced the RUC forecast model with the newer and more acdride
forecast modeih March 2012 Subsequenlimited comparison of RAP wind predictions to the ACARS wind reports
shows markedly reducedorth and Eastvind erros for altitudes above FL200This cursory examination was
performed to understand how the RUC analyses would translate to the currerforecast productavailable
While not presented in this papénpse results showed thide standard deviatisrof the wind errorof the RAP
wind predictions above FL200 do not exhitiie samesignificant increase with altitudes shown irFigure4. As a
result of this improvement, thimpact of the wind errors on ETA accurasyexpected tde lessenetbr the initial
portion of the arrival route.

B. Spatio-Temporal Correlation in Wind E rrors

At a given altitude, the standard deviasoof North and Easwind errors at two spatially and temporally
separated locations amustances ofime, arefound to be correlated. From a physical perspegcthie is expected
since the wind error at particulaphysicallocationwill change gradually over time due to changeséprevailing
winds. Furthermore, the wind errors at nearby locatiamis be similardue to the largascale nature aitmospheric
winds andthe overall sparseness of the RWIO grid Consideration of this spatiemporal correlation is necessary
to properlysimulae wind errors during higtiidelity air traffic simulations.Without both temporal andpatial
correlation an aircraftflying along a given patleould potentially experience unrealistichanges of th@redicted
wind such as a strong headwind immediately followed by a strong tailWwlodleling the proper amount of
correlation is importansincetoo little correlation underestimates the effect of the wind error on &¥cAracybut
too much correlatiooverestimatethe effect of the wind error on ETdccuracy

An example of the correlation coefficient variation with respect to relative distaudctnae is shown ifrigure
5. The correlation coefficient variation was calculated for each RO@recast using an fday moving average
which in the present studyas selected as 15 days strong correlation with respect to time is found at the same
physical location (relative distance = 0 nmi). The correlation with respeghysical locationat the same time
(relative time = 0 minteg is found to decrease exptially. An i nt eresting feature is the
strong correlation along a linthrough therelative distanceand relative time space A possiblecauseis the
availability of ACARSwind reportsalong specificarrival routesin the terminal areainstead ofacrossa larger
generic areaWake vortices from a leading aircraft along an arrival route can affect the local wind pattern
encountered by a following aircraft along the same route. phé&nomenon requires further analysikich is
beyond the scope of this paper
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Figure 5. Spatio-Temporal Correlation of North and EastWind Errors
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Generally, the wind errorare found toexhibit low correlation when spatially separated by more than 10 nmi.
Similarly, the wind errorare found tcexhibit low correlation when temporally separated by more than 5 minutes.
Both of these scalés distance and timé are significantly shorter timathe typicalair traffic managemerarrival
planning horizons which are approximately-@0 minutes and 15050 nmi.As a result, the effect of wind error
over sufficiently long routes will be attenuated. Both scales also significantly shorter thanetlyrid size and
update period of the available RUC and RAP wind forecast prodlicts.experimental High ResolutidRapid
Refresh (HRRR)model with a grid size of 3krhas the potential to provide a grsike and update period more
similar to the typical aival planning horizond® Thus, use of the HRRR wind forecast product in future -high
fidelity air traffic simulations might allow the effects of the wind errors spatial correlation to be simulated.

C. Seasonal Variation of Wind Errors

Figure6 andFigure7 show the seasonal variation érth and Eastvind errors as a function of thday of the
year and altitudeThe plots show different wind error behavior for altituddmve andbelow 10,000 feet. For
altitudes above 10,000 feet, thera®gnificant seasonal variation. In this altitudgege the wind errorat PHXare
smallestduring thesummermonths of Julythrough Septemberand largestduring thewinter months ofJanuary
through April Converselythere islittle seasonal variation of the wind forecast errfansaltitudes below 10,000
feet
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Figure 6. Seasonal Variation of North Wind Errors at PHX
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D. ETA Variation Along PHX Routes
2011-01-20 13:01:00 EAGUL5: GUP to RWYO08
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Figure 8. ETA Variation Along EAGUL5 Route from GUP to PHX Runway 08

In order to evaluate the effect of the wiadd wind erroron ETAs, a set of 5008amplewind profiles were
created by applying the observed sp&timporally correlated wind errors corresponding to each RUC-hour
forecast windfile as illustrated in Figure {See Section IId)ETAs were then calculated basedtbat set 0f5000
samplewind profiles the RUG40 1-hourforecast winds, anderowinds for each routerigure8 shows the resugt
of the simulation runs conducted using the RU@D 1-hour forecastfor January20, 2011 at 1300Z along the
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EAGULS arrival route from theGUP en route transitiorix to PHX Ruway 08 The difference between the blue
line and the red line is a measure of the wind magnitusle e f f e .cThe spread dE theAcyan colored histogram
is a measure of the wirelr r effedd @an ETA Subsequendeterminatiorof the seasonal variatiemf the WMM
and WUM are generated using results like those shoviaigure 8 for all RUCG-40 1-hourforecasts and all arrival
routes.

E. Seasonal Variation ofthe Wind Ma gnitude Metric

Figure9 shows the seasonal variation of the WMaé defined byeq. (1)). This WMM can be interpreted as a
statistical measure of tleverageETA change due to windloft. The time series clearly shows both high frequency
variations(i.e., changes over a periofl @ few days)and low frequency variationg.e., changes\er a period of
months orthe entireseason)The resultsndicate that the months of Juiind August ae the time periodwhen the
winds havethe lowestimpacton ETA During thesesummemonths, he ETAchangedue to the winds is less than
5% of the flight timefrom the en route transition to the runway thresh@ldring the other months of the year, the
ETA changedue to windsincreases td.0-15% with some periods spiking to -28%. Furthermore, duringhese
summemonths, thewind effect is moreonsistenand thehigh frequency variations aedgtenuated
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—

Figure 9. Seasonal Variation othe Wind Magnitude Metric

F. Seasonal Variation of Wind Uncertainty Metric

Figure 10 shows the seasonal variation of the Wbslsed orthe standard deviatiometric (as defined by Eq.
(3)). The WUM results are very similar to the WMM results discussed earlier.time series clearly shevoth
high frequency and low frequency variatiofiie resultsagainindicate that the mahs of July and August are the
time period when the wind errors have the lowest impact on &riability. During these summer months, the
estimatedstandard deviatioof the ETA due to the windrroris approximatelyl% of the flight time. During the
other months of the year, the estimagtdndard deviationf the ETA due to wind errdncreases tapproximately
2% with some periods spikings high a®.53%. Furthermore, during these summer months, the wirat effect is
more consistent and the higtequency variations are attenuatd@these resultsuggestghat the ETA uncertainty
induced by wincerrorwill be less than 1 minute fanarrival phase of flighgenerally lastin@0-30 minutes.

Figure 11 shows tle seasonal variation of the WUbhsed on the 9percentileinterquartile rangemetric (as
defined by Eq(2)). The resits behavenearly identicato the seasonal variation of the WUM based on the standard
deviation. The magnitude is appropriately larger sithee90percentile interquartile range is naturally larger than
the standard deviation; for normal distributioités approximately3.3times larger.
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Figure 10. Seasonal Variation of Wind Uncertainty Based orstandard Deviation Metric

Figure 11. Seasonal Variation of Wind Uncertainty Based on 9®ercentile Interquartile Range Metric

VI. Conclusions

The current papeinvestigatesthe effect of wind uncertainty resulting from forecast errors on the expected
timesof-arrival. The studyspecifically focuses on the PHiérminal areaN O A A BUWC-40 1-hour wind forecas
product, and the yeaf 2011. It can be concluded from the results of shiglythat the wind forecast errors are: (i)
dependent on the altitudd(ji) spatiotemporally correlated, and (iig@xhibit modest seasonal variatiokFhe wind
magnitudesgyenerally cause ETA variations less than 10% when compared to ETAs with zerdHewmelver, the
wind magnitudesan cause ETA variatiorss high a225% in limited casesThe wind uncertainty resulting from
forecast errorgienerallycause ETA variationtess than % when compared to the ETA with zero wind errors.
Under certain conditions, the wind uncertainty resulting from forecast errors can reachhE8tudy serves as a

11
American Institute of Aeronautics and Astronautics



