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Abstract

Departure runway usage is a major source of delay
in the US National Airspace System. Additionally,
the current first-come-first-served paradigm for al-
locating departure runway usage produces strong
incentives to airlines to spend all this delay time on
the taxiway, even though this can result in wasted
fuel. In this paper, a novel dynamic second-price
auction method for allocating runway usage is de-
veloped. Analytical and simulated results are ob-
tained that suggest the proposed method does not
increase total delay, and that almost all delay is
spent at the gate (thereby saving fuel). Thou-
sands of simulations of a realistic scenario at John
F. Kennedy International Airport indicate that this
new mechanism offers two benefits over the current
first-come-first-served mechanism. The first bene-
fit suggests this mechanism can reduce airline costs
(beyond the savings on fuel). The second benefit
suggests the auction mechanism can generate more
equitable spread of delay across airlines by an ap-
propriate parametrization over budget constraints.

Nomenclature

A The set of airlines.

F. The set of flights belonging to airline a.

F The set of all flights (i.e., F =J, Fa).

C The set of aircraft classes.

cf The class of flight f.

Te The amount of time since the most recent
takeoff of aircraft class ¢ occurred.

oy The minimum amount of time until flight f
can be ready to takeoff.

0¢ A positive real number indicating a flight

f’s perceived value over time.

G.(y) A distribution function over priority values
~ for class ¢ of aircraft.
H,(a) A distribution function over earliest runway

use times « for airline a.

bs The bid of airline a in state x

dcie; ' The minimum required runway separation
between leading flight ¢ and trailing flight
j.

D The separation matrix, with entries dc, ;-

C. A vector of the earliest time that each air-

craft class can begin to use the runway
when at state z (C, € R‘f‘).

R, The set of remaining flights at state z.

P The probability that airline a believes the
next aircraft class to use the runway is c.

S The state space of the auction. S = R, x
C, xK,

x A state (i.e., z € S).

(a)™  max{0,a}.

Introduction

Airport systems are complicated networks, rich with
heterogeneous flight operators with specific finan-
cial goals, temporal and spatial uncertainties, and
home to one of the largest global transportation
economies. Due to increasing demand and fuel
costs, air traffic controllers and flight operators are
pressured more than ever to use airport resources ef-
ficiently. Recently, many have realized that a con-
tributing factor to inefficient operations is due to
poor sharing of important information across all
stakeholders at airports. Concepts to effectively
manage surface traffic through the timely exchange
of information are under development both in Eu-
rope [ll] and the United States (US) [?]. This pa-
per briefly describes different approaches to manage
surface traffic, but the primary focus of this paper
is to offer an alternate method for allocating run-
way resources through a novel dynamic second price
auction.

Among all resources at US airports, departure
runway usage accounts for over 50% of total aircraft
delay [3] and is a major network bottleneck [4]. For
instance, the authors in [8] show that over 90% of



sequencing decisions at US airport systems are han-
dled on a First-Come-First-Served (FCFS) basis. In
the US, FCFS entices airlines to push aircraft back
from gates and onto the airport surface as early as
possible to get an earlier slot at the runway . This
process can cause excessive fuel burn and unneces-
sary congestion and delays at airports.

European airports, such as Munich [6], have
adopted Airport-Collaborative Decision Making (A-
CDM) as a standard operational procedure. The
purpose of A-CDM is to provide standard depar-
ture procedures, enhanced information sharing, and
efficient surface scheduling. Coupled with Euro-
pean scheduling tools such as DEparture MANange-
ment (DMAN), A-CDM has shown to reduce hold-
ing times at runways by 1.5 minutes per aircraft
and significantly increase departure compliance to
take-off slots.

To coordinate the pushback process in the US
various strategies have been investigated, such as
slot allocation procedures [[7], aggregate flow mea-
sures [8], and individual aircraft control procedures
[@]- [IT]. While all concepts differ in their execu-
tion, they all fundamentally attempt to minimize
engine on time by keeping aircraft at their gates for
as long as possible while also not degrading runway
throughput.

To allow for airlines to communicate priorities
and account for constraints at runways, a new dy-
namic second price auction is introduced. The dy-
namic second-price auction runs in real-time (dy-
namic) and issues pushback times to allocate de-
parture runway slots. In this second-price auction,
airlines bid for a runway slot by submitting one bid,
the highest bidder gets the slot (i.e., issued a push-
back time to meet the slot) and only pays the second
highest-bid. The mechanism requires only knowl-
edge of each airline’s current bid of wvirtual credits
to allocate the runway slots, where Estimated-Off-
Block-Times (EOBTSs) and finances are kept private
to each airline. When auction parameters are re-
sampled every bidding round, analytical results are
derived suggesting that delay for the auction will
be approximately efficient. When auction parame-
ters are kept over several rounds, thousands of com-

puter simulations are provided and seeded with data
from John F. Kennedy International airport (JFK)
to show how the auction competes with a cost opti-
mal solution, delay optimal solution, delay optimal
allocation with noise ( [T0] analog), and FCFS. The
goal is to show that the auction is able to keep to-
tal delay 2 approximately the same as other feasible
mechanisms, while shifting almost all of it to the
gate, thereby greatly reducing fuel waste.

This paper is organized as follows. Problem
Statement and Related Work introduces the De-
parture Runway Scheduling Problem (DRSP) and
provides a literature review. The Dynamic Auc-
tion Mechanism section describes a simplified vari-
ant of the model, where all private information is
redrawn every bidding period. Then, a more so-
phisticated auction is provided, where private in-
formation is kept across bidding periods. Finally,
section the Simulation section provides simulated
results for the auction using a bidding strategy, and
compares them with alternative methods of allocat-
ing runway usage. Finally a summary of the paper
is given in the conclusion section.

Related Work and Problem State-
ment

Literature Review

US associated literature provides evidence of sub-
stantial work to find schedules for departure run-
ways and meter gate release times. For example, to
achieve less congestion on airport taxiways and at
runways, the Collaborative Departure Queue Man-
agement [7] model uses a Generalized Ration By
Scheduling (GRBS) algorithm [I4] that allocates
runway slots to airlines in a multi-airline environ-
ment. Field evaluations of this model were con-
ducted with two major participants and showed re-
ductions in taxi times (engine-on time). While the
model attempts to “equitably”
pacity, it does so by using updated estimated push-
back readiness times from all airlines. The system
expects the rate of pushback of each flight opera-
tor’s aircraft to adhere to the allocation provided

allocate runway ca-

! Airlines are also judged by their on-time performance through published reports, and pilots are motivated to push back
since pilots do not start earning their wage until the aircraft has pushed back.
2Total delay is the time the aircraft on the airport surface less the minimum time.



during metering. By allowing for manual control
over when aircraft can pushback, there is unneces-
sary uncertainty in actual wheels-off times. More-
over, in a highly competitive airport environment
there will be competition for such slots, possibly en-
ticing airliners to submit false estimations of times
of readiness to pushback to acquire better takeoff
slots.

To avoid including airlines in the decision-
making process, American authors [I0] propose to
manage queues at the border between Air Traffic
Control (ATC) and airline control (i.e., spots). This
concept provides timing advisories to release de-
partures from spots that optimize throughput and
delays. The concept was tested in a high fidelity
human-in-the-loop simulation environment for Dal-
las/Fort Worth International Airport. Overall, the
concept relieves congestion on the taxiways but in-
creases congestion in the ramp areas. A promis-
ing result from this research suggests that if air-
craft were queued up at their gates fuel use would
have decreased by 38%. However, queuing aircraft
at gates requires airlines to communicate and col-
laborate with air traffic control. Moreover, in situ-
ations where there are more than one airline, this
concept would need to account for various airline
preferences.

Authors in [8] use a flow metering strategy called
N-Control to control congestion at US airports.
This concept was successful at reducing aircraft taxi
times, but required that the FAA controlled all air-
line gate pushbacks. Researchers therefore chose
Boston Logan International as their test airport,
where most pushbacks are controlled by FAA per-
sonnel. At most airports, however, gate pushback
is controlled by individual airlines. Even if a third
party entity is performing the metering, it is not
clear that airlines will use a system where priorities
are not communicated. Hence, there is an explicit
need for airlines to communicate their priorities over
their aircraft.

Like [§], authors in [d] attempt to hold air-
craft back at gates at JFK by looking at aggregate
statistics on runway throughput. However, the con-
cept is different in that it provides pushback times
to each aircraft using the ration-by-schedule algo-
rithm. Airlines get slots proportional to the number
of scheduled departures and the capacity of the run-

way for a given planning period (i.e., 15 minutes).
The airline then decides, among their own aircraft,
which aircraft uses the owned slots. The system
then assigns pushback times to those aircraft. Pri-
orities are included by allowing for inter- and intra-
airline departure swaps. To accommodate the many
airlines at JFK, a neutral third-party position is
created to perform all pushbacks. Using pushback
times, the concept has been successful in reducing
taxi times and congestion at JFK. With so many
airlines, most of the sequencing is done on small
subset of the total aircraft that want to pushback.
Therefore it is unlikely that the final departure se-
quence is optimal with respect to inter-aircraft sep-
aration. For instance, the simulation section shows
a centrally optimal solution can yield 25% lower av-
erage delay per aircraft solution than the baseline
by re-sequencing.

European airports have approximately 40% less
excess taxi out time than US airports [IH]. The
reason for lower delays may be advances in commu-
nication between various stakeholders at European
airports and differences in flow control policies. At
Zirich and Munich [6] airports, for example, an in-
formation sharing system called Airport Collabo-
rative Decision Making (A-CDM) has been imple-
mented to share airport, airline, and ATM data.
A-CDM can enable schedulers to optimize depar-
ture aircraft by specifying Target Start Up Approval
Times (TSATSs), from shared EOBT times. Com-
pared to the US, this means that the pushback can
be coordinated effectively through a larger degree
of information sharing. For example, an evolution
based algorithm for optimizing arrivals and depar-
tures through a high degree of coordination was pre-
sented in [I6] for use at Roissy Charles de Gaulle
Airport. These times are generated to meet Central
Flow Management Unit (CFMU) slots and reduce
taxiway congestion.

While meeting CFMU slot times is important,
other European literature suggests how to fairly al-
locate landing slots [I8]. Arrival scheduling is sim-
ilar to departure scheduling, where certain landing
sequences can achieve higher throughput and lower
delay. Authors in [I8] suggest that airlines should
share cost information directly with a central plan-
ner to achieve a highly efficient outcome. If im-
plemented well, such a model could result in the



highest overall benefits to airlines. Unfortunately,
airlines in the US may not be willing to divulge such
information and therefore, an indirect mechanism
for achieving gate holding may be necessary.

Sealed-bid first-price auctions and combinato-
rial auctions are suggested by [[9] and [20] as gen-
eral mechanisms to allocating runway resources. In
the sealed-bid first price auction, bidders bid for
runway slots using real money and the highest bid-
der wins and pays his bid amount. The term sealed-
bid refers to the fact that no other airline sees what
any other airline bid. These auctions present a pri-
mary and secondary market where runway slots are
initially allocated based on a first-price sealed bid
auction, then traded on a secondary market.

Authors in [I7] provide designs and concepts
for mechanisms to allocate runway slots at highly
congested airports. They argue that auctions (or
market mechanisms) play a fundamental role in the
management of air transportation — suggesting that
auctions can help manage operational efficiency, po-
litical challenges, and safety issues. Moreover, [[7]
suggests that when designing the auction mecha-
nisms the distribution of weight classes should be
considered because the capacity of the runway (or
the number of slots to allocate) is dependent on the
weight class distribution. The concepts discussed
by [I7], [19], and [20] work on larger time horizons
(i.e., months to days) than the auction considered
in this paper. The use of tactical auctions for allo-
cating runway slots still needs to be explored.

In contrast to previous work, this paper finds
solutions to a DRSP using a second-price auction
model where airline financial models and aircraft
pushback times are kept private. This method pro-
vides means for airlines to prioritize their aircraft
at runways while accounting for inter-aircraft sep-
aration at the runway. When all parameters are
re-sampled every auction, analytical results show
delay will be approximately efficient. Furthermore,
a simulation for a more complicated model, based
on data from the JFK airport, is carried out. Un-
der mild assumptions, reasonable delay-efficient so-

lutions for these simulations are found, indicating
that auctions are a promising prospect for efficiently
allocating runway usage.

Departure Runway Scheduling Problem

Here the central planning problem, where all infor-
mation is known, is described.

Given a set A of airlines, and each airline a € A
has a set of flights F,, all destined to the same run-
way. Each flight f € F,(Va € A) belongs to a class
cy € C. Given a separation matrix D, with entries
Oc;c; that gives the minimum time after a flight of
class ¢; uses the runway that a flight of class c; is
able to follow it. Each of these flights f also have
a scheduled pushback time Sy, an unimpeded taxi
time Ty, and a minimum time oy at which they can
begin to use the runway unimpededly.®

Assuming ¢y is the time flight f is assigned to
use the runway and g(ty,,...,ts,) is a generic cost
function, the following Mixed Integer Linear Pro-
gram (MILP) mathematically defines the problem:

Minimize g(ts,,...,15,) (1)
such that:

gyt =t = Ocper) 2 0Vfi # f €| JFa (2)
b o Ve B ®)

zr, €{0, 13V # fj el JFa (4)

2hpy 2 =19fi# fj €| JFa (5)

Remark: zy,y, is defined: zy,¢, =1 when aircraft f;

precedes f; at the runway, and 2y, = 0 indicates
that aircraft ¢ does not precede j at the runway.
While authors in [[Z] solve a taxi scheduling prob-
lem, many of the constraints for this model are
similar.

The above mathematical formulation describes
a sequencing problem at the runway, where aircraft

are sequenced efficiently with regards to function g.

Equation B is a non-linear” constraint, and can

3Note, while all oy are visible in the central planning problem, it is not the case that ay = Sy + Tr. The reason for this
is because ay is highly uncertain. That is, aircraft do not pushback immediately at their scheduled times and taxi according
to a nominal taxi time. However, you can imagine all oy being revealed to the central planner when it needs to formulate a

plan.

A linearization can be done simply by writing the equation as: ty; —tg = Ocp ey > —(1—2y,5;) ¥ M for some large M.
i’



be interpreted as a separation requirement on each
aircraft using the runway. That is, if flight f; pre-
cedes flight f; (27,7, = 1), then the time flight f;
uses the runway (ty,) must be after f; uses the run-
way (tf,), plus an additional separation (c;, fj).
These separation values exist due to operational
considerations, such as the departure aircraft wake
vortex.

Equation B enforces that the time a flight actu-
ally takes off (tf,) cannot be earlier than the earli-
est possible time that the flight could have taken off
(O‘fi)'

Equation B enforces that zy,f, is a binary vari-
able.

Equation B enforces that either flight f; precedes
fj, or f; precedes f;, but not both.

Objective Functions

For DRSP two objective functions are introduced,
g1 for delay and go for cost. Solving this linear pro-
gram for each of these functions will give results for
best-case sequencing, which can then be used as a
baseline when analyzing alternative methods. Note
that since the a’s are private information to each
airline, this optimization is infeasible in practice,
and therefore merely provides a lower bound on the
best feasible outcome.

The first objective is a delay optimal solution

where all private information is known exactly:
n

Gty ntr,) =Y (tg, —ay,) (6)
=1

This equation looks at the amount of time between
when a flight was ready to leave, and when it actu-
ally leaves, and is used primarily in [I2].

To measure airline costs, the following function
is used:

n
92(tpy, i ty,) :ZVfi<tfi —ayf) +ypL (7)
i=1
where vy, represents the importance of flight f; € F,
to airline a. In principle, v, could be any increasing
function (i.e., more delay is always worse than less).
This paper assumes a linear function and uses vy,
to represent the slope.
When a flight does not pushback within 15 min-
utes (900 seconds) of its scheduled gate pushback
time, it is recorded as delayed [[3]. To capture this

effect, L is introduced, the cost to the airline asso-
ciated to these critical delays. The binary variable
Yy, is 1 when flight f; has exceeded this limit, and
0 otherwise.

When optimizing over this objective function,
new constraints and variables are required:

900 + Sfi - (tfi - sz’)
— viie R

ys, €{0,1} Vfie | JFa (9)

Assuming that all delay occurs at the gate, the ac-
tual pushback time of flight f is (t;—T%). Thus, if f
pushes back more than 900 seconds after its sched-
uled pushback time, the quantity 900+ 57— (tf—T%)
is negative. For a sufficiently large constant M,
-1 < %@f—m < 0, which forces yy = 1.
If f does push back within this interval, then the
quantity is positive, which allows y; = 0. Note that
since this lowers the objective value, the optimal
solution will always select y; = 0, if it is able.

0<uyy,+

Dynamic Auction Mechanism

For each auction, every airline a € A has two ele-
ments of private information for each of their flights:
(1) the earliest time a flight f can use the runway
(ay) and (2) a weighting factor v that corresponds
to how much airline a values flight f. For pri-
vate information oy and 7y, it is assumed that each
airline knows their own values perfectly, but only
has a probability distribution over possible values
for their competitors. In addition to private infor-
mation, each airline a is constrained by a budget
by € RT, allocated for a finite number of auctions.
A state x is an ordered triple containing:

1. Ry, the set of remaining aircraft to use the
runway

2. Cy, the vector corresponding to the earliest
time that each aircraft class can begin to use
the runway

3. By, the vector of the remaining budget for
each airline

Airlines will bid on slots to use the runway, us-
ing virtual credits that can only be spent on these
auctions. If an airline wins an auction, they will



be able to send one of their aircraft to the runway
next. These auctions will be repeated until the air-
port is empty, with each winner taking the next slot
in the queue. Each auction will have a second-price
format, meaning that the highest bidder pays the
second highest bid and wins the slot. This auc-
tion format was chosen because it is truthful. This
means that under fairly general assumptions, it is a
dominant strategy for each airline to bid exactly its
value for a slot.

Simple Model

A simplified variant of the dynamic auction is dis-
cussed. This model makes many assumptions, some
of which are not realistic. However, these assump-
tions do not affect the underlying principles of the
situation being modeled. By making these assump-
tions, a simplified analysis can be made that pro-
vides an intuition of the fundamental behavior of
the proposed mechanism. Additionally, clean ana-
lytical results can be obtained. In the next section,
a discussion of ways to extend this model to make
it more realistic is provided. Additionally, the next
section demonstrates how to simulate a more com-
plicated version of the problem.

At time t = 0, every airline independently draws
a value 72 for every class of aircraft, from the cumu-
lative distribution(s) G.(v). For now, it is assumed
that there is only one class of flights, and then ex-
tend the model to multiple classes later. When
there is exactly one class ¢ of airplanes, unambigu-
ously use 6 = 6., and Cp = Cy(c). If it is also
assumed that all flights with the same airline/class
combination are valued equally, then vy = ~¢. Since
this simplified model only has one class of flights,
further simplify v¢ to ~°.

Every flight f € F independently draws a value
ay from the distribution(s) H,(«). For the remain-
der of this section, ignore the dependency « and
write H,. Some factors that might cause these dif-
ferent distributions are that airlines have different
nominal taxi speeds, as well as different distances
from their terminal to the runway. With each suc-
cessive time step, a new set of v* and o are drawn,
independently from each other and previous values.
Since every round in this simplified model is inde-
pendent, any strategy that works for one period can

also be repeated for arbitrarily many periods.

If every airline has the same distribution on their
values of a ¢ (with CDF H), then the cdf of the min-
imum over all ay (i.e. the earliest flight that could
possibly take off) is

Hpin =1 — (1 — H)IFI. (10)
Note that the median of this minimum distribution
occurs when H = 1— (3)T. Therefore, even with a
moderately large number of aircraft, and the origi-
nal distribution H is ‘reasonable’, then every airline
can be confident that there will probably be a flight
ready to take off very soon.

If each airline can have its own distribution over
values of ay, then a slightly more complicated for-
mula is used:

Hmin: 1-— H(l_Ha)lFa‘- (11)
acA

Even if is not assumed the earliest flight will win
the slot, there is a tight upper bound. Within
each airline/class combination, the airline will al-
ways choose the flight that will be ready first. Since
each airline will choose its earliest aircraft of each
class, the latest that a winner could possibly use the
slot is JJ,ea(l — (1 — H,)Fal). Each term in this
product is the distribution over the earliest flight
for each airline. Taking the product of all these dis-
tributions gives the distribution of the maximum of
these minimum values. In other words, it describes
a worst-case scenario, where the airline which will
be ready last actually wins the auction. For reason-
able distributions of H,, this expression will still be
quite small, especially if there are significantly more
flights than airlines. Thus, even if the earliest air-
craft doesn’t win the auction, the average amount
of delay can’t get very large.

When there is not a single dominant airline at
the airport, then every airline has a tight distri-
bution predicting that the winning aircraft will be
ready to take off very soon after the auction occurs.
Thus, as a first order approximation, it is reason-
able for airlines to assume that if another airline
wins the current slot, they will use the slot immedi-
ately. However, this potential additional delay will
be incorporated later, when the more complicated
model is simulated.

These values, ay and «?, determine the flight’s
cost function; this gives the opportunity cost of out-



comes in state x. If a flight does not win the cur-
rent auction, and is therefore delayed by the flight
that does win, it enters state 2’. In this new state,
Cp = max{t + 0,Cy}. The first term says that
the winning aircraft takes off at time ¢, forcing any
other aircraft to wait until time ¢ + ¢ before they
can follow. The second term says that any other
aircraft also needs to wait for the required separa-
tion time for any aircraft that took off in even ear-
lier auctions. If the separation distances satisfy the
triangle inequality (i.e., d;; + ;5 > &; ) for every
triple (i, 7, k)), then this second term will automati-
cally be satisfied whenever the first one is, reducing
the expression to Cpy = t 4 4. Since the simplified
model only has one class of aircraft, the triangle in-
equality is trivially satisfied, so the reduced formula
can be used for the rest of this section.

Additionally, define af = max{Cy,ay} as the
actual earliest time that flight f can take off in state
2. This says that first, a flight must wait the neces-
sary separation distances before it can take off, and
second, it must wait until it is physically ready to
take off (tanks full, luggage/passengers loaded, etc).
This allows an expression for the opportunity cost
of not getting the next slot in state x:

Cost! = (Cp — 04?)+ x %, (12)
In other words, if the flight would not be ready to
leave for a long time anyway, then nothing is lost by
waiting. However, if the flight that loses could have
taken off sooner, then there is an opportunity cost
for losing the auction, and this cost is proportional
to the amount of delay the losing flight suffers.

As noted earlier, since the separation distances
satisfy the triangle inequality, this expression can
be simplified:

Cost! = (t+6 — o)t x4 (13)
If the current state has some flight ready to take
off, then it must be the case that ¢t > C, since all
flights are of the same class. If ay is restricted to
not being in the past (i.e. ay > t), then further
simplify:

Cost/ = (t 4+ —ap)™ x 4% (14)
Note that this assumption is only used to simplify
notation in this specific case. When actually work-
ing with the model, Cost/ can be substituted with
the simplest expression that applies to the case be-
ing considered.

l —t >

O a+d a,+0

Figure 1: Important values of time.

In Figure O, important values of time are indi-
cated. Value t corresponds to the earliest instant
that any aircraft can use the runway, after the most
recent flight has taken off (this most recent takeoff
occurred at time ¢’ =t — 4, in the past). Time oy is
the earliest time that airline 1 can use the runway,
and ao is the earliest time for airline 2. Moreover,
t + § is the earliest time that any airline could use
the runway, if the airline who wins the auction is
ready to take off immediately. Finally, oy + § is
the earliest time other aircraft can use the runway,
if airline 1 wins the auction and begins to use it
at aq. Similarly ag 4+ d is the earliest time other
aircraft can use the runway if airline 2 wins.

Suppose that airline 1 wins the auction. In this
case, the distance oy —t corresponds to the amount
of time until the first flight is ready to take off.
The distance t + d — ag corresponds to the amount
of delay airline 2 would suffer, if it did not win the
auction, and the winner was able to takeoff immedi-
ately. The longer distance a; + § — ap corresponds
to the actual amount of time that airline 2 must
wait, if airline 1 wins the auction.

Recall the analysis of the distribution H,;,. As
long as no airline controls a majority of the flights
at the airport, airline 2 will have a tight distribu-
tion near t where they expect the earliest flight to
be. Therefore, they will rationally believe that the
distance oy —t will be small, so that the actual de-
lay they suffer by losing the auction (a1 + § — ag)
can be approximated by ¢t + § — as. This delay is
then multiplied by ¢, the marginal cost of delay.

If a flight wins the current auction, then it will
not be delayed by another flight. However, the cred-
its spent on this auction cannot be spent on a later
auction, so there is an opportunity cost of b2, the
bid of the second highest airline, as. It is possible to
determine an exchange rate between real money and
virtual credits, which will allow all costs to be ex-
pressed in the same units. Theoretically, this could
also be accomplished by charging real money to win



runway slots, though this would cause other, non-
technical problems in convincing the airlines to im-
plement this new mechanism.

Since the only difference between the cost func-
tions of flights of the same airline/class combina-
tion are their earliest takeoff times, it is a weakly
dominant strategy to send out these flights in the
order of their ay’s. Therefore, when trying to deter-
mine the winner of the auction, one only needs to
consider the earliest flight in each group. This will
simplify the analysis, since there are now at most
only |A| x |C| flights to consider, rather than |F|.

Let f* = argminycr, ay. Then the cost if air-
line a loses the auction is

S Mt +s—af)t (15)
f€Fa
The cost if it wins the auction is
b2+ Y M+ —af)t (16)
feFaq
J#*
The difference between these expressions is
by — 4 (t+ 0 — afc*)"' (17)

Since the airline wants to minimize their cost, they
want to win whenever by < y*(t 4+ 6 — afc*)Jr, and
lose whenever the inequality goes the opposite di-
rection. This can be achieved if airline a bids

b :’y“L(t—i-é—oz]””c*)+ (18)
These results assume that it is possible for an airline
to bid more than its budget, but that higher bids
continue to generate additional dis-utility. Again,
in terms of real currency, this situation makes more
intuitive sense than the virtual credit analog. How-
ever, for simulations the hard budget constraint is
incorporated.

The first observation from this result is that if
there is an aircraft that will be ready to leave before
t + 9, then it will beat every aircraft that will not
be ready to leave until after ¢ + §. This is because
any aircraft which will not be ready by t+ ¢ will bid
zero, while any aircraft that would be ready would
bid a positive amount. This establishes a maximum
on the amount of delay possible each round.

Furthermore, define e = 4% — 4%, and label the
airlines such that € < 0. This means that a'’s air-
craft cost at least as much as a’s, or equivalently
Ya < 7ar. Also, suppose both airlines have flights

that are able to take off before ¢ + §. Then
bf — b =e(t+0—aj,)+%af, —af.) (19)
If airline a wins the auction, then

’Y ’

a

s — O 2 (Ta —D(t+d—af,) =0 (20)

which means that airline a was indeed ready to take
off no later than airline a’.

Unfortunately, the converse doesn’t quite hold.
If ’ wins the auction, then
7 /

a

O — O < (W —1)(t+0 —af.) (21)

However, since this upper bound can be strictly pos-
itive, it is not certain that o’ was actually ready
sooner than a. If the two values of 7y are close to each
other, then the maximal value of this error is small.
Additionally, if airline a’ is causing a large delay by
winning this slot ahead of a (i.e., o =+ J),
then the difference between the two airlines’ earli-
est takeoff times is also small. In other words, as
the delay gets worse, it means that the maximal dif-
ference between the two airlines decreases. This is
good, since it rules out the possibility of awarding a
slot to a plane that will take a long time to take off
when there is another plane ready to take off much
sooner.

This difference is important, because (afj, —
a?)* is the decrease in throughput caused by airline
W winning the auction over airline L. If airline W
will be ready first, then there is no throughput loss,
even though there is a period of time (af, — t)*
when no flight is using the runway. There is no
loss, because no matter who won the auction, no one
else could have been ready to use the runway either.
However, if one of the losing airlines could have been
ready sooner, then the time between when they are
ready and when the winner actually starts using
the runway is wasted, reducing throughput by that
amount. Therefore, by showing that this quantity
is usually zero, and that when it isn’t it is still quite
small, it can be seen that this auction mechanism
will create only a small loss in throughput.

Note that this small amount of throughput loss
is relative to a theoretical ideal arrangement, where
all private information is common knowledge to a
central planner. This is impossible in practice, due
to airline incentives to hide their private informa-
tion. Therefore, even though the model predicts



some loss in throughput from an ideal level, it is
still expected it to perform better than the current
FCFS system.

For the simplified model, new values of v* and
ay are drawn from the same distributions, and each
airline is given the same budget (the opportunity
cost of bidding was already explicitly incorporated
into the cost function in the previous round). Since
this new round has no direct connection to the pre-
vious round, the same strategy will still apply, and
most of the time the flight which will be ready soon-
est will be selected to leave next. Additionally, un-
der modest assumptions, when errors do occur they
will have only a small effect on throughput.

Multiple Classes

Many of the results found in the previous sec-
tion can be extended to the case of multiple air-
First, equation () is altered to make C
and v depend on the class of the relevant aircraft:

Cost! =2 (Cy(cy) — at)+
Each airline can calculate how much (weighted)
delay each of their flights would cause to the rest
of their fleet if it is selected in the current auction,
and choose the flight which will minimize this total:
[ =argmingcg, Z Cost! (22)

feFq
f#A1

Then the cost of winning is still given by equation
(IB). The cost of losing is similar to equation (IH),
but since this depends on the class of the winner,
each airline must take an expected value over the
possible winning classes from other airlines. If P¢
is the probability that airline a believes the next
winner will be of class ¢, given that airline a does
not win the auction, then this expected cost of los-

ing is:

ZPC“( Z Cost/ )

ceC feFa
Because of this expected value, the terms do not
cancel as nicely as in the single-class model. How-
ever, a flight will only bid a positive amount if it
would actually suffer some additional delay from
not winning the current auction. In other words,
any flight which will be ready to take off by its
maximum separation distance will outbid any flight

lines.

(23)

which will not. Such a flight f must satisfy:

af <t+ max Oe,cp (24)

This places a strict upper bound on the amount of
delay possible.

Simulation Model

While closed form analytical results for simple mod-
els are given, there are still many more features
that need to be incorporate into the model to make
it realistic. Since adding these features will make
the model significantly more complicated, this more
complicated model will be analyzed through com-
puter simulation. This section will explain the ad-
ditional features, and how they will be incorporated
into the simulation algorithm. From this point on,
all times are measured in seconds, unless otherwise
noted.

One important change is to introduce greater
continuity between auctions. Currently, the pri-
vate information is reset every period. While this
makes the problem much more tractable, the ability
to model airlines as forward-thinking is lost. To fix
this, make oy and ~; persistent across rounds. Also,
a hard budget constraint is implemented, which pre-
vents airlines from bidding more credits than they
have remaining.

Aircraft Readiness

At the beginning of the day, every airline must post
a schedule of their flights for that day. However,
some flights will be ready to leave before their sched-
uled times, and some will not be ready until after
their scheduled times. These schedules are generally
the same every day (with some variation between
weekdays/weekends). This means that the actual
departure times of these flights can be tracked over
time (it would be easy to make this data common
knowledge to all the airlines), which can give a prob-
ability distribution of the actual departure time for
every flight on the schedule.

There are several reasons that the actual depar-
ture times can differ from the posted times. For
example, if a flight takes off for a trip A — B an
hour late, the flight using that same plane traveling
B — C will probably be delayed about an hour as



a result. This delay can be foreseen while the first
flight is sitting delayed at airport A, and is common
knowledge to all airlines. Therefore, they would
not rationally expect the flight to depart for C' un-
til much later than scheduled, and would take this
into account when bidding in the auction. There is
some randomness in the actual takeoff time of the
flight A — B, which will be resolved at the time of
takeoff.

There is a smaller amount of randomness in the
flight time between A and B. This can depend on
factors like the weather. Given historical data for
the actual transit times between airports, airlines
will have a distribution over when a given aircraft
will arrive at its destination, given the type of air-
craft and the time it departs.

After a flight arrives at B, it must perform all
preflight procedures. The delays that result from
preflight procedures are private information to the
airline. They occur on a much shorter timescale,
and are more difficult for other airlines to observe.
Therefore, only the airline will know how long these
delays are likely to take, while other airlines can
only guess, based on a wider distribution of histor-
ical delay.

With this in mind, a description of the way that
the a¢’s will work in this simulation is presented.

First, every airline publishes a schedule for the
day of expected takeoff times for all their flights.
Until the plane arrives at the departure airport, this
distribution is so wide (relative to the separation
distances between aircraft classes), that it does not
affect the bidding policy of any airlines. After the
plane arrives at its departure gate, the actual readi-
ness time oy will be revealed to the airline that
owns the flight, and every other airline will have a
tighter distribution over this value ay. This distri-
bution the other airlines know will be the same as
the distribution from which the a;’s are drawn.

Only flights whose planes are currently at the
airport will be allowed to bid for slots. For the
purpose of simulation, this will be approximated by
saying that only flights with ay —¢ < 30 minutes
are eligible to enter an auction at time ¢.

Weighting Factors

Instead of every airline/class combination having
a single weight v¢, every flight will have its own
v¢. However, flights from the same airline/class
combination will be drawn from the same distribu-
tion, while different combinations can potentially be
drawn from different distributions.

Timing

The timing of the auctions in the simplified model
was driven by the separation distances required be-
tween aircraft types, which are on the order of 1-2
minutes. However, between when a flight wins an
auction and when it takes off, it also needs to taxi
from its gate to the runway, which takes more like
10-15 minutes. There is currently quite a bit of
variation in taxi out times, mostly resulting from
long queues at the runway. Since this system will
remove the FCFS incentives which generate these
long queues, most flights should be able to move at
nominal taxi speed, reducing both the average and
the variance in taxi times.

In the model, it is assumed that the uncertainty
in the delay occurs entirely at the gate. Given the
time that a flight pushes back, and the sequence of
aircraft that have preceded it (and their pushback
times), it should be possible to calculate a flight’s
takeoff time with certainty. If all airlines had the
same taxi times, the last winner pushes back at time
t, and the minimal separation distance to follow
that winner is d,,;,, then run the next auction can
be run at any time between ¢ and t + d,,,;, without
changing the outcome. Any flight that would be
ready to push back during that interval would wait
until ¢ +§ > t + dmin to actually push back, and
any flight that won without being ready would still
push back at their earliest pushback time. When-
ever the flight leaves, it will head straight to the
runway and takeoff, without any additional delay.
By having flights wait at their gates, fuel waste will
be reduced.

Unfortunately, since taxi times are not the same
for all airlines, using this method may leave the run-
way unused for significant periods of time. To re-
duce this decrease in throughput, a buffer is created
by running several auctions at once. At the begin-
ning of the day, k auctions are run to assign the



first k slots. Each of these k flights will be given a
requested pushback time, which would give it a just-
in-time departure if all previous flights make their
requested pushback times. When the first flight in
the buffer actually pushes back, the k + 1% auc-
tion occurs. This process continues through the day,
keeping a buffer of flights to maintain runway usage.
Later the affect the buffer size k£ has on taxi times
and airline costs can be observed.

Objective Function

The airlines do not place any inherent value in the
virtual credits; the credits are only useful to the ex-
tent that they can be exchanged for slots to use the
runway. What airlines care about is reducing delay,
and they will attempt to use their credits to com-
pete with other airlines for delay reduction. Let 7
be the actual time that flight f departs the airport.
Then the objective function that each airline cares
about is:

Total Cost, = Z ve(Tp —ayp) +yrL

f€Fa

Minimizing this function minimizes the total cost to
each airline for the delay of their aircraft over the
course of the day.

(25)

Note that the model does not take into account
which other airlines win which slots. The only ex-
tent to which an airline will care about the actions
of its competitors is in how those actions affect de-
lay for its aircraft. Since this is already included in
the actual takeoff times of all the flights, there is
no need to include any explicit information about
other airlines’ takeoff times. This is assuming that
all airlines care primarily about their own delay, and
will not delay their own aircraft to cause additional
delay for their competitors.

Simulation Values

In order to test the auction model, it was important
to use an airport that was frequently busy/over ca-
pacity (such that some sort of optimization would
have noticeable effects), and that did not have a sin-
gle dominant airline (since a system like [I0] would
work better than an auction in such an environ-

ment). An excellent candidate would be JFK In-
ternational Airport. Unfortunately, the data source
[21] is missing all international and cargo flights that
makes up a significant portion of flight operations at
JFK. Therefore, the available data from JFK is used
to simulate an airport with an appropriate number
of flight operations.

In the Simulation section results are presented
comparing an auction approach to delay optimal
and cost optimal solutions under various levels un-
certainties. Approximately 1000 unique scenario in-
stances were run for each modef.

Penalty

To discourage airlines from bidding for slots they
aren’t ready to use immediately, a penalty function
is implemented. If d is defined as the difference be-
tween the requested and actual takeoff times for the
flight, then the winner would actually pay b} %1.03¢%,
Since the airlines would know both of these times
with certainty during the auction, they could shade
their bids by 1.037%.

Strategy

To determine which of their flights to send out, each
airline performs exactly the same calculations us-
ing equation (22). Unfortunately, determining the
probability of each possible winner (both flight and
actual readiness time) proved too difficult. Instead,
a heuristic strategy was used. Each airline begins
with the average amount of credits they have re-
maining per flight, and multiplies that by a factor
that represents how valuable the current auction is,
compared to what they expect the remaining auc-
tions to be.

The first factor in this multiplier is 7y, since
more valuable flights should command higher bids.
The next factor is inversely proportional to the
amount of time until the flight could be ready to
push back, since flights that will not be ready for a
long time should have lower bids. The third factor
relates to long delays. If an airline could get a flight
out before the long delay would occur, then the fac-
tor is inversely proportional to the amount of time

5For details about the values used to generate these scenarios please contact the authors. Most of the data was generated

using sources from [21].



until this penalty point occurs; that is, if a flight is
just before the time when it could avoid the long
delay, it will have a very high bid. If a flight is al-
ready past the point of receiving a long delay, then
the factor is a constant, which is small enough to
prevent these delayed flights from beating out on-
time flights. The final factor is a constant, designed
to make the average bid approximately equal to the
average number of credits per flight.

Simulations

One of the first tasks of the simulation was to de-
termine how large the buffer k£ should be for the
auction. If it is too small, then the runway goes
unused. If it is too large, then delay shifts from the
gate to the airport surface. The following plots in
Fig. B show relevant statistics for 1 < k < 7:
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Figure 2: Average total delay per aircraft as a
function of buffer size (k).
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Figure 3: Average total cost per aircraft as a
function of buffer size (k).

In Figures. B and B, that total delay (gate plus
taxi delay) and total cost per aircraft both grad-
ually decrease with buffer kK = 1 to £k = 3, then

stabilize for k£ > 4. The average delay completely
stabilizes, while the max and min delay appear to
be converging to the average. This phenomena is
likely a function of the airport taxi-out times, where
larger differences in taxi-out times will lead to run-
way down-time if a large enough buffer is not pro-
vided. This suggests that a good buffer will be large
to avoid the runway down-time and force a smaller
spread of delay among aircraft. However, as evident
in the next plots, the buffer has a direct affect on
the trade-off between taxi delay and gate delay.
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Figure 4: Average gate delay per aircraft as a
function of buffer size (k).
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Figure 5: Average taxi delay per aircraft as a
function of buffer size (k).

Now consider Figure @ and Figure B which show
the average gate and taxi delay as functions of the
buffer size, respectively. First note that the gate
delay rapidly increases from £ = 1 to k = 2, since
at k = 1 no aircraft are held at the gate. A close vi-
sual inspection of Figure B indicates that taxi delay
is minimized at k = 4 and then begins increasing
slightly. Since the goal is to reduce engine on time
(i.e., taxi time), while keeping the total delay and



cost as small as possible, a good k value will prevent
large taxi-out delay and reduces the total delay and
cost.

Summarizing this analysis from all the plots con-
sidered so far, k = 4 is a good buffer value. This
results in about approximately 100 seconds of de-
lay per aircraft at the gate, and less than about 20
seconds of delay per aircraft on the taxiway.

The next set of charts (Figs. B-8) compares
several different methods of allocating runway use.
Each chart is constructed in a similar manner, so
before discussing their results their structure is dis-
cussed. For each chart, the first two bars corre-
spond to results from the MILP introduced in the
Departure Runway Scheduling Problem section, op-
timizing for cost and delay. These results both as-
sume a central planner with access to information
that is not available in practice, but they do pro-
vide a lower-bound on the best outcome possible.
Since ATC will not have perfect information regard-
ing aircraft pushback, the « values are perturbed,
by adding uniform random noise from an interval
4+120s or +240s around the true value. The next
two bars correspond to MILP solutions for minimiz-
ing delay, but with these noise terms, as an approx-

imation of mechanisms that try to optimize runway
schedules without receiving information from air-
lines regarding pushback. These methods are called
“Noise: 120s” and “Noise: 240s” for 120s and 240s
of noise, respectively. The fifth bar corresponds to
FCFS, the method actually used at most airports
currently. The final three bars correspond to dif-
ferent implementations of the auction mechanism.
The first allocates every airline the same number
of credits per flight for their initial budgets. The
second varies this credit assignment to try to equal-
ize delay across the airlines, and the third does the
same to equalize avoidable costs.

Moreover, 4 new metrics are used in the fol-
lowings figures: (1) avoidable cost, (2) unavoidable
(cost), (3) avoidable long delay, and (4) unavoid-
able long delay. Avoidable cost is the cost that air-
lines can control through bidding (i.e., optimizing
equation (Z3)). Unavoidable cost is the cost that
arises due to the randomization of ay which could
be larger than 900 + Sy. Similarly, avoidable long
delay is a long delay that could be avoided through
winning auctions. Finally, an unavoidable long de-
lay is a long delay that arises due the randomization
of ay.
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Figure 6: Comparison of Runway Allocation Mechanisms: Average Delay Per Aircraft



Both FCFS and the Noise methods create strong
incentives to push back as early as possible. Figure
B demonstrates the primary advantage of the auc-
tion mechanism; delay can be shifted from the air-
port surface to the gate, greatly reducing fuel waste.
Total delay is similar to FCFS, and slightly less than
the Noise methods, so overall airport efficiency will
not significantly decrease.

Average Cost per Aircraft (Credits)

are avoidable. It is observed that cost optimization
nearly eliminates avoidable long delays, since they
are so detrimental to airline cost functions. Ad-
ditionally, the auction results in fewer long delays
than the Noise methods or FCFS, demonstrating
that the auction has successfully incorporated air-
line preferences to some extent.
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Figure 7: Comparison of Runway Allocation
Mechanisms: Average Cost

Figure [@ shows the average cost per flight. The
blue portion corresponds to the cost of long delays
that were unavoidable, because the flights’ internal
delays were over 15 minutes, while the red portion
corresponds to those costs which were theoretically
avoidable. The auction achieves better cost results
than FCFS and the Noise methods.
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Figure 8: Comparison of Runway Allocation
Mechanisms: Average Long Delays

Figure B shows the number of delays greater
than 15 minutes: blue are unavoidable, and red
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Figure 9: Comparison of Runway Allocation
Mechanisms: Max Delay to Min Delay Ratio

Finally in Figure B, blue represents the ratio be-
tween the highest /lowest average delay airlines, and
red represents the ratio between highest /lowest av-
erage cost airlines. The closer these ratios are to
1, the more equal the distribution of delay (cost)
between airlines. First, notice that in general de-
lay is easier to balance than cost. Second, when
credits are distributed to airlines purely based on
the number of flights, the result is less equitable
than any alternative method. However, the results
are highly sensitive to the credit distribution; by al-
tering the initial budgets, the central planner can
achieve arbitrarily close distributions of either de-
lay or cost. Additionally, balancing one will result in
significantly more balance in the other, compared to
an even credit distribution. Attempting to balance
delay results in distributions that are significantly
more equal for both delay and cost, when compared
to any of the feasible alternative methods.



Conclusion and Next Steps

In this paper, an innovative method for allocat-
ing runway usage is described, based on a dynamic
second-price auction. Clean analytical results for a
simplified version of the mechanism show that usu-
ally the auction will succeed at creating an efficient
flight ordering at the runway in real-time.

Furthermore, a more complicated version of the
auction is simulated and compared with other meth-
ods that could be used to solve the same problem.
The auction mechanism greatly decreases taxi delay,
which would lead to significant fuel savings. This
savings comes without any noticeable increase in to-
tal delay. It also results in slightly lower costs and
number of long delays, compared to feasible alterna-
tives. Finally, through strategic budget allocation,
the FAA is able to equalize average delay across air-
lines, generating a more equitable solution than the
other mechanisms.

The auction mechanism allows airlines to keep
their financial information private and still commu-
nicate priorities via bidding. Since all currency for
the auction is in the form of virtual credits, the
mechanism accomplishes its goals without having
to severely change the political and financial atmo-
sphere at airports. In addition, since bids are the
only data processed, the mechanism might alleviate
costs in developing central information exchange,
airline operational standards, and /or political costs.

Fundamentally, there are still many hurdles to
tackle to make use of the proposed approach. While
the mechanism focuses on providing departure air-
craft pushback times, arrival aircraft need to be ac-
counted for during this process. The reason is that
arrivals and departure aircraft share gates, taxi-
ways, and other airport resources. Hence, it is im-
portant to extend the mechanism further to either
work around arrival aircraft, or include arrivals in
decision making process. Equally as important, a
more detailed study on the feasible strategies of the
second price auction needs to be carried out. Cur-
rently, the strategies developed for simulating air-
line behavior are based on intuition. Since strate-
gies that are efficient and constitute equilibrium can
be good predictors of bidding behavior, additional
analysis of new strategies should be analytically or
numerically justified. At a minimum, high fidelity

human-in-the-loop studies should be carried out to
determine bidding behavior norms, human machine
interfaces, and provide guidance on the operational
concept.
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