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Abstract We derive an important property for solving large-scale integer pro-
grams by examining the master problem in Dantzig–Wolfe decomposition. In
particular, we prove that if a linear program can be divided into subproblems
with affinely independent corner points, then there is a direct mapping be-
tween basic feasible solutions in the master and original problems. This has
implications for integer programs where the feasible region has integer corner
points, ensuring that integer solutions to the original problem will be found
even through the decomposition approach. An application to air traffic flow
scheduling, which motivated this result, is highlighted.

Keywords Integer Programming, Parallel Algorithms

1 Introduction

Large-scale integer programs arise in several contexts, including transportation
scheduling. Solving even the linear programming (LP) relaxation of these prob-
lems may be computationally expensive and require decomposition to solve in
reasonable time, but such approaches have few guarantees with respect to in-
tegrality. In particular Dantzig–Wolfe (DW) decomposition benefits from both
improved memory utilization and inherent parallelization for linear programs
of the correct form, but the optimal solution found is not necessarily basic. An
optimal, basic solution is important for integer programs whose formulation
is such that basic solutions imply integer solutions. When that is the case, a
basic solution would obviate the need for any further integer optimization.

In Goncalves (1968), it was shown that a basic feasible solution found by
DW can be trivially mapped to a basic feasible solution of the original problem
if it satisfies certain properties related to its basic variables and the degeneracy
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of the subproblems. Here we show that affine independence of the columns is
sufficient to satisfy this criterion, and that Binary Integer Programs (BIP) can
always be decomposed to satisfy this.

Others have studied how to find basic solutions from interior optimal solu-
tions in Megiddo (1991) and Bixby and Saltzman (1994), but to our knowledge
this is the first application of its kind to DW decomposition. One application
of DW decomposition to integer programming is Vanderbeck (2010), which in-
tegrates a branching scheme based on a pricing oracle in order to find integer
solutions, in contrast to our approach which looks to identify when DW can
find integer solutions directly. A more general application of column generation
for integer programming is provided by Barnhart et al (1998).

A formulation of the Traffic Flow Management Problem in air traffic control
provided by Bertsimas and Patterson (1998) is such an example of a strongly-
formulated model that benefits from the results presented here. In fact, the
strong performance with respect to both solution quality and run time of the
application of DW decomposition to this problem was highlighted in Rios and
Ross (2010), which motivated the result presented here.

2 Dantzig-Wolfe Decomposition

DW decomposition is a method for solving LPs of block-angular form:

Minimize c′1x1 + c′2x2 + . . .+ c′lxl (1)

subject to D1x1 +D2x2 + . . .+Dlxl = b0 (2)

Fixi = bi,xi ≥ 0, i ∈ {1, 2, ..., l} (3)

where the x, b, and c vectors are of appropriate dimension.

Constraints (2) are called connecting constraints since they involve vari-
ables from the independent sets given by (3). Denoting Pi to be the solutions to
(3), having extreme points {xji}j∈Ji , each feasible xi in Pi can be represented

as a convex combination of {xji}j∈Ji .
By substitution we can then rewrite the above LP as the full master pro-

gram:

Minimize

l∑
i=1

∑
j∈Ji

λjic
′
ix
j
i

subject to

l∑
i=1

∑
j∈Ji

λjiDix
j
i = b0∑

j∈Ji

λji = 1, λji ≥ 0, i ∈ {1, 2, ..., l}

where {λji}j∈Ji,i∈[1,...,l] are now the decision variables.
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Since the vast majority of λji variables are valued zero at any given itera-

tion, most columns Dxji are irrelevant to the master, which motivates column
generation. For each i, an independent LP is created, known as a subproblem:

Minimize (c′i − q′Di)xi

subject to Fixi = bi, xi ≥ 0

where q is the dual variable vector associated with the connecting constraints,
made available from the master problem. The master problem, in essence, asks
the subproblem for a variable (column) that will improve the master’s objective
function. The subproblem provides a variable xi with negative reduced cost
whenever that is possible. The master iterates over all subproblems until its
objective can no longer be improved, implying an optimal solution has been
found.

A full description of DW can be found in Dantzig and Wolfe (1960) and
Bertsimas and Tsitsiklis (1997), with computational issues highlighted in Ho
(1987); Ho and Loute (1981) and Tebboth (2001).

3 Mapping Basic Feasible Solutions

When an optimal solution to the original LP exists, DW will always converge
to an optimal solution (as shown by Dantzig and Wolfe (1960)), but it may
not be a basic feasible solution to the original problem. The only criterion
of which we are aware that relates the basic feasible solutions of the master
and original problems was presented by Goncalves (1968), a result which has
not been frequently utilized. We state this criterion here with more commonly
accepted notation.

Let T be a solution to the full master problem with N non-zero λji values.

For each subproblem i, define P 0
i =

∑
j∈Ji λ

j
ix
j
i to be the component of T

that corresponds to a feasible solution of subproblem i. Let F dii be the face of
smallest dimension (di) that contains P 0

i in the respective problem’s feasible
space. Define the degree of degeneracy of a basic solution β to be the number of
zero-valued basic variables representing that solution, denoted D(β). A basic
feasible solution to the full master program with l subproblems maps to a
basic feasible solution of the original program if and only if:

D(T ) +N − l +

l∑
i=1

D(F dii )−
l∑
i=1

di ≥ 0. (4)

This was discovered and proven by Goncalves (1968). We will refer to this
inequality as the Goncalves Criterion. Assuming that all variables from the
original problem are present in exactly one subproblem (always enforceable),
then D(T ) + N − l is the number of connecting constraints in the master
problem and D(T ) + N is the number of basic variables at any iteration of
the DW algorithm. A full description is found in Goncalves (1968), and the
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correspondence between Appa (1969) and Goncalves (1969) corrects a small
error and argues the theoretical utility of this result.

4 An Example of the Goncalves Criterion

The intuition behind the Goncalves Criterion is potentially muddled by the
necessary notation. For that reason, we provide an example exercising many
aspects of it using a trivial linear program. Consider the following LP:

Minimize −x1 − x2 (5)

subject to x1 + x2 = 1 (6)

x1 ≤ 1 (7)

x2 ≤ 1 (8)

xi ≥ 0 ∀ i ∈ {1, 2}.
Note that the optimal objective value is −1 and is achieved by an infinite
number of solutions satisfying constraints 6-8. We will examine two paths the
DW algorithm might take through a decomposition of this problem and show
their respective relationships to the Goncalves Criterion.

First, consider a single subproblem for DW decomposition created by using
both constraints 7 and 8. The feasible region of that subproblem would be
the unit square in the positive quadrant. The key matrices (using the notation
from Section 2) are D1 =

[
1 1
]

and F1 =
[
1 0
0 1

]
. Given this F1, the four

corresponding xji values can be labeled as follows:

x1
1 = (0, 0)

x2
1 = (0, 1)

x3
1 = (1, 0)

x4
1 = (1, 1).

Assume that through a “Phase 1” procedure, the first two solutions provided
to the reduced master problem to form a basis are x1 and x4 (we need two
since there are two constraints in the reduced master: one for the connecting
constraint and one of the subproblem convexity constraint). Forming the prod-
ucts x1

1 and x4
1 with D1 provides the single-valued columns (recall because we

only have one connecting constraint 6) D1x
1
1 = 0 and D1x

4
1 = 2, respectively.

The reduced master will assign weights for λ11 and λ41 of 0.5 and 0.5, respec-
tively, to obtain an optimal solution (i.e., (x1, x2) = (0.5, 0.5)). Given all of
these values, we can calculate the various GC parameters:

D(T ) = 0 (reduced master solution is non-degenerate)

N = 2 (number of non-zero columns in reduced master)

l = 1 (number of subproblems)

d1 = 2 (solution maps to center of F1, a 2-D space)

D(F d11 ) = 0 (no constraints in F1 are at equality).
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Now checking the GC with these parameters we see that

D(T ) +N − l +

l∑
i=1

D(F dii )−
l∑
i=1

di = 0 + 2− 1 + 0− 2 6≥ 0

and, therefore, this solution does not map to a basic solution of the original
problem. Note that this is despite the fact that the solution is optimal in the
original problem. This is also an example of how DW can converge to non-basic
(though optimal) solutions of the original problem and might complicate inte-
ger optimization problems. For instance, if we added an integrality constraint
to x1 we would still have work to do if provided this solution from DW.

Now consider the same decomposition as described above, however for an
initial basis was are provided with x1 and x2. The columns (λ11 and λ21) of the
reduced master will then be D1x

1
1 = 0 and D1x

2
1 = 1, respectively. That will

force values of λ11 = 0 and λ21 = 1 for and x value of (0, 1), which is an optimal
solution to the original problem. We can again calculate the GC parameters:

D(T ) = 1 (reduced master is degenerate: one zero-valued basic variable)

N = 1 (number of non-zero columns in reduced master)

l = 1 (number of subproblems)

d1 = 0 (solution maps to a corner point (a 0-D space) of F1)

D(F d11 ) = 1 (one constraint in F1 is at equality).

Again checking the GC with these new parameters we see

D(T ) +N − l +

l∑
i=1

D(F dii )−
l∑
i=1

di = 1 + 1− 1 + 1− 0 ≥ 0

and, therefore, this solution maps to a basic solution of the original problem.
This is easily seen since this solution in the original problem maps to a corner
point of its feasible space.

5 Guaranteeing Satisfaction of the Goncalves Criterion

We now state the main results of this paper, which build upon the Goncalves
Criterion.

Theorem 1 Any decomposition of a linear program in block-angular form
such that each subproblem has affinely independent corner points will satisfy
the Goncalves Criterion at every iteration of the Dantzig–Wolfe decomposition
algorithm.

Proof Let Ni represent the number of non-zero λji in T that correspond to
columns from subproblem i. Since the corner points of each Pi are affinely
independent, P 0

i =
∑
j∈Ji λ

j
ix
j
i must be found on a face of dimension di =
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Ni − 1 (see discussion of affine frames in Gallier (1999), for example). Since
D(T ) and D(F dii ) will always be non-negative by definition,

D(T ) +N − l +

l∑
i=1

D(F dii )−
l∑
i=1

di ≥
l∑
i=1

(Ni − 1− di) = 0

and the Goncalves Criterion is satisfied. ut

Theorem 2 The linear relaxation of any Binary Integer Program (BIP) can
be decomposed into subproblems with affinely independent corner points.

Proof The linear relaxation of any BIP includes the constraints 0 ≤ xi ≤ 1.
Therefore one (trivial) decomposition is constructed by placing all constraints
into the set of connecting constraints except for the 0 ≤ xi ≤ 1 constraints. By
placing exactly one of these into each separate subproblem, the conditions of
Theorem 1 are satisfied since the only feasible corner points to any subproblem
are xi ∈ {0, 1}, which are affinely independent. ut

Through Theorems 1 and 2 it is clear that there is at least a trivial decom-
position to any BIP that will allow for satisfaction of the Goncalves Criterion
at every DW iteration. Of course by itself this is not particularly helpful, as
the full decomposition is equivalent to solving the problem without any de-
composition at all. However, we also observe the following:

Observation 1 If a problem is formulated for DW decomposition and any
one of the subproblems is further subdivided into two or more subproblems,
then the left-hand side of Inequality (4) will often increase, and almost never
decrease.

This is true because the combination of the first three terms of Inequality
(4), D(T )+N − l, gives the number of connecting constraints, which is nonde-
creasing as further subdivisions are completed. Each subdivision requires some
constraints which were previously in a single subproblem to be moved into the
connecting constraints, which increases this value. It cannot be strictly guar-
anteed that the remaining terms are nondecreasing, but the tighter constraints
of each subproblem coupled with their decreased dimensionality generally lead
to lower values for di.

Combining Theorems 1 and 2 with Observation 1, the following method
will guarantee to eventually find an optimal basic feasible solution of any BIP,
and often find it without needing to trivially decompose the problem.

1. Decompose the LP relaxation using DW decomposition and solve.
2. If the DW solution is basic in the original problem, then STOP.
3. Otherwise, select a subproblem with non-basic P 0

i , subdivide that problem
further, and repeat.

Because of Theorem 2, this will eventually find a basic solution for a BIP.
If the problem is totally unimodular, then this will also be an integer solution.
This was observed in particular for the air traffic scheduling problem described
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next which, while not totally unimodular, is known to have mostly integer
basic feasible solutions (see Bertsimas and Patterson (1998)). In Rios and
Ross (2010) it was seen that the procedure described above did in practice
find an optimal solution without needing to fully decompose the problem.
This resulted in a superior solution quality and run-time compared to any
other known method of solution.

6 An Example from Air Traffic Management

We now provide an example from a transportation sub-domain, but we will
re-iterate that the application of DW using the insights described in Section 5
will apply to other applications just as well. This is especially true for models
like the one we are about to present that have binary decision variables and
are strongly formulated such that most corner points are integer-valued. These
properties help leverage the results of Theorems 1 and 2.

The key criteria In Air Traffic Management, the demand and capacity
balance of airports and en route airspace must be carefully managed. Bertsi-
mas and Patterson (1998) introduced the following BIP to describe the core
scheduling problem:

Minimize
∑
f

[
(cgf − c

a
f )

∑
t,k=P (f,1)

t(wkf,t − wkf,t−1)

+ caf
∑

t,k=P (f,last)

t(wkf,t − wkf,t−1) + (caf − c
g
f )df − cafrf

]
(9)

subject to ∑
f :P (f,1)=k

(wkf,t − wkf,t−1) ≤ Dk(t), ∀ k ∈ Airports, t ∈ Time

(10)∑
f :P (f,last)=k

(wkf,t − wkf,t−1) ≤ Ak(t), ∀ k ∈ Airports, t ∈ Time

(11)∑
f :P (f,i)=j,P (f,i+1)=j′

(wjf,t − w
j′

f,t) ≤ Sj(t), ∀ j ∈ Sectors, t ∈ Time

(12)

wj
′

f,t+µ(f,j) − w
j
f,t ≤ 0, ∀ f ∈ F , j = P (f, i), j′ = P (f, i+ 1)

(13)

wjf,t − w
j
f,t−1 ≥ 0, ∀ f ∈ F , j ∈ (f ’s flight path) (14)

wjf,t ∈ {0, 1}, ∀ f ∈ F , j ∈ (f ’s flight path), t ∈ Time (15)



8 Joseph L. Rios, Kevin Ross

The decision variables wjf,t are valued 1 if and only if a flight f has entered
sector j by time t (14). The objective (9) is to minimize the weighted sum of
ground and air delay costs, subject to airport departure (10), airport arrival
(11), and sector capacity constraints (12). Each flight is described as an ordered
list of distinct sectors and airports constrained by earliest and latest feasible
time steps as well as physical and temporal limitations of the flights in (13)
and (14), respectively.

Real-world instances (thousands of flights, hundreds of sectors, airports,
and time steps) of this model are computationally intense. Fortunately, the
LP relaxation is in block diagonal form, which suggests the application of DW
decomposition, first presented in Rios and Ross (2010). It is also known to
have mostly integer corner points (see Bertsimas and Patterson (1998)), which
makes it a good candidate for application of the approach described in this
paper.

It can be shown that the solutions satisfying (13) and (14) have affinely
independent corner points for each flight, f . By theorem 1, this means that
this particular BIP will find basic solutions through DW decomposition with-
out needing to fully decompose the problem to the trivial case described in
the proof of that theorem. Following the algorithm described in section 3 and
to demonstrate the utility of the approach, the problem was decomposed into
successively finer subproblems. At the end of each decomposition, a good in-
tegerization approach (described as the choose-one heuristic in Rios and Ross
(2010)) was used to find the nearest integer solution to the optimal solution
found through DW decomposition, with the optimality gap corresponding to
the difference in objective value between the optimal and corresponding integer
solutions.

Figure 1 shows the results in terms of this optimality gap (on the left) and
the run time (on the right). Both measures improve as the number of subprob-
lems increases, until the optimality gap reaches zero. The maximal decompo-
sition required was 5920 subproblems, which was the number of flights in the
scenario, at which stage constraints (13) and (14) relating to an individual
flight were placed into individual subproblems. Note that this is significantly
less than the 654,300 variables (all binary), which shows that the trivial decom-
position described in theorem 2 is not necessary to reach the optimal integer
solution. This result is especially significant because it provides a method for
minimizing delays in the United States national airspace which can be oper-
ated in real-time. This is in contrast to previous methods which either could
not guarantee optimality or could not solve within the window of time being
scheduled (e.g., a scenario with a two-hour planning horizon could take over
two hours to solve).

The reasons for the improvements in runtime and solution quality presented
in Figure 1 are not completely obivious, but are owed to several factors. One
factor includes the properties described in this paper for obtaining basic so-
lutions through properly decomposed subproblems. Another important factor
for the improved runtime is the fact that the decreasing size of the subprob-
lems make them increasingly trivial for modern linear programming software
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Fig. 1 Quality and speed over an increasing numbers of subproblems. Both the optimality
gap (on the left) and the runtime (on the right) improve as the problem is subdivided into
more subproblems. For this air traffic example, the optimality gap goes to zero with 5920
subproblems

to solve. Coupled with the availability of computer systems with multiple
cores, the runtime descreases dramatically despite having to solve many more
subproblems.

7 Discussion and Conclusion

We have presented a sufficient condition for consistently mapping basic so-
lutions from a Dantzig–Wolfe decomposition back to basic solutions of the
original linear program. By ensuring affine independence of the corner points
in the subproblems, one can guarantee a direct correspondence. We have shown
that any BIP can be decomposed to satisfy this condition, and computational
results on a large-scale BIP indicate that integer solutions may be found even
using a less refined decomposition than necessary. In fact, the computational
results hint that, in practice, near affine independence will aid in ensuring a
mapping exists between basic solutions in the master and original problems.
When integer programs are strongly formulated, this result shows that the pos-
itive qualities of the original program in terms of integer corner points will not
be lost when performing Dantzig–Wolfe decomposition when the subproblems
are carefully constructed.

There are several fertile directions for future research in this area. A funda-
mental question to which a mathematical modeler might want a clear answer
is when to employ a technique as described here versus a branch-and-price
approach. Assuming there is no free lunch, the answer will depend greatly on
the models being used. A large-scale computational study comparing imple-
mentations of DW and branch-and-price would likely shed light on scenarios
more befitting the DW approach described here over branch-and-price, and
vice-versa. Another interesting extenstion to this work would be to determine
what level of decomposition to apply a priori to acheive results similar to those
presented in Section 6. Currently that decision would be more art than science,
relying on the experience and insight of the user.
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