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Abstract— Delay cost functions that quantify the cost of delay
to airlines are essential to air traffic management research.
Seventeen delay cost functions from previous research are
evaluated with airline actions in Airspace Flow Programs.
Airlines are assumed to solve a minimum cost perfect matching
problem when matching flights to slots. Unobserved aspects of
airline costs are accounted for by adding a noise term to the
cost functions. The goal of this research is to find the cost
function and corresponding noise parameters that maximize
the likelihood of airline actions during 32 Airspace Flow
Programs in the summer of 2006. A heuristic is developed that

finds cost noise parameters that maximize an approximation
of the log-likelihood of the airline actions. When applied
to sample estimation problem instances generated by solving
linear programming problems with known noise parameters,
the heuristic can more accurately estimate noise parameters
than a simple simulation-based approach. Validation efforts
based on synthetic airline action data generated with known
delay cost functions and noise parameters demonstrate that
the heuristic is in many cases able to correctly identify as most
likely the delay cost function that was in fact used to generate
the synthetic data. However, the heuristic also under-estimates
the magnitude of the cost noise variance on these estimation
problem instances. Delay costs that are proportional to the
length of delay, but with larger proportionality constants for
flights bound for hub airports, maximize the approximation of
the log-likelihood of the historical airline actions. The estimated
standard deviations of the cost noise, expressed as a fraction of
the average assignment cost for the historical matchings, ranged
from 0.1 to 0.7 for cost functions that achieved relatively large
approximate log-likelihoods.

I. INTRODUCTION

Flight delays impose undesirable financial costs on air-

lines. These costs can be most accurately estimated by

airlines because they alone are aware of most of the relevant

factors, but airlines are reluctant to reveal their costs because

doing so could be advantageous to their competitors. Air traf-

fic management researchers are more likely to develop tools

that help airlines and other stakeholders if they accurately

understand airline behavior. This is true even for researchers

designing collaborative mechanisms designed to elicit cost-

related information from airlines and to allocate capacity ac-

cordingly. Without the benefit of knowing the actual financial

cost of delay for airlines, researchers typically assume that

airlines take actions to minimize a delay cost function that

can be computed with publicly-available data. Hopefully, this
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function is strongly correlated with the financial costs that

airlines are actually trying to reduce and therefore leads to

accurate airline behavior models.

Aside from our own previous work [1], only one effort has

been made to tune and validate these delay cost functions

with records of airline actions. In her dissertation [2], Xiong

used airline flight cancellation and slot usage data from

Ground Delay Programs to tune parameters in discrete choice

models of airline behavior. Discrete choice models assign

a probability to every possible choice an airline can make

based on the cost of each choice. Xiong’s research revealed

many characteristics of airline delay costs, but it also has

some limitations. Most importantly, Xiong did not study any

“separable” delay cost models. Separable delay cost models

use a flight delay cost function to compute the cost of

delaying each flight and assume that the total airline cost

is the sum of the individual flight delay costs. While there

are exceptions, most air traffic management research assumes

a separable delay cost model. Some airline decision support

tools are also based on separable delay cost models [3]–[5].

Furthermore, Xiong’s use of Ground Delay Program data

limited her ability to investigate the difference in the cost of

delay for hub-bound flights and other flights. Finally, while

Xiong studied linear models with data-intensive variables

related to airline revenues, her work did not consider some

simple variables from previous research, such as the minutes

of delay multiplied by a weight related to the time-of-day or

destination airport [6], [7].

The goal of this research is to find, from a set of delay

cost functions proposed for separable delay cost models, the

functions and corresponding additive cost noise parameters

that maximize the likelihood of historical airline actions

in Airspace Flow Programs. To this end, a heuristic is

developed that finds cost noise parameters that maximize an

approximation of the log-likelihood of the airline actions. In

our previous work, this heuristic was applied to this problem

but was not justified or validated [1]. In this paper, the

heuristic is justified and some validation of its performance

is presented.

The remainder of this paper is structured as follows. Sec-

tion II provides background information about Airspace Flow

Programs. The airline behavior model, maximum likelihood

estimation problem, and two heuristics for this problem are

defined in Section III. In Section IV, estimation problem in-

stances with known noise parameters are used to investigate

the validity of the heuristics. Airline delay cost functions are

evaluated in Section V and conclusions are in Section VI.
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II. BACKGROUND

An Airspace Flow Program (AFP) is a mechanism used

by the Federal Aviation Administration (FAA) to assign

departure delays to aircraft in order to reduce demand for

a region of airspace known as a “Flow Constrained Area”

(FCA). AFPs are based on slots. A slot is the right to fly

into an FCA during a specified period of time. The FAA

assigns departure times to flights so that each flight arrives

at the FCA approximately at the time of the slot to which it is

assigned. Slots are allocated to airlines with an algorithm that

is based on a first-scheduled-first-served (FSFS) principle. By

default, each airline’s flights are assigned to their allocated

slots in a FSFS manner, but the airline can adjust this

assignment. Some airlines alter assignments of flights to slots

in AFPs thousands of times each year. In this paper, records

of these airline assignment actions are used to evaluate airline

delay cost functions.

III. METHOD

A. Airline Behavior Model

Airlines have tools and procedures that allow them to

make acceptable decisions during an AFP, but the problem

they face during an AFP is complicated and difficult for

researchers to model [8]. For example, the impact of delaying

each flight is difficult to compute because passenger, luggage,

crew, and aircraft connections mean that delaying one flight

may impact several other flights. To make this problem

tractable, a separable delay cost model will be utilized.

Specifically, it is assumed that airlines attempt to minimize

the sum of the delay costs associated with assigning each

flight to each slot. This model assumes that airlines ignore

the dynamic nature of the AFP, uncertainties, the possibility

of canceling flights or routing them out of the FCA, and the

behavior of other airlines, except when the flight delay cost

function attempts to include such issues.

If airlines minimize a separable delay cost, then the

problem faced by airlines when assigning flights to slots is

well-known and referred to as the “minimum cost perfect

matching” problem. Given a set of flights and slots, a

“matching” is a set of connections between flights and slots

such that flights are matched to only one slot and vice versa.

A “perfect matching” is any matching in which no flight or

slot is left unmatched.

Let F be the set of flights belonging to an airline in a

matching, and let S be a set of all of the airline’s slots in the

matching. The number of flights and slots is n. Associated

with each flight fi ∈ F is a scheduled time of arrival at the

constrained resource tfi and associated with each individual

slot sj ∈ S is a time tsj and a time window [tsj , tsj + δ] for

some δ ≥ 0. A flight fi can only be assigned to a slot sj if

it can arrive at the FCA before the end of the time window

corresponding to the slot (that is, if tfi ≤ tsj + δ). There

are historical assignments of flights to slots where tfi > tsj ,

so delay is computed as d(fi, sj) = max{0, tsj − tfi}. This

information makes up the data for the minimum cost perfect

matching problem assumed to be solved by the airline.

The set of historical matchings of flights and slots by an

airline is denoted by (F ,S,M). An element (F, S,M) ∈
(F ,S,M) contains the set of flights F and set of slots

S associated with the perfect matching M selected by an

airline. Matrix M is a square n × n binary matrix with

an entry for each possible assignment of a flight to a slot.

Element Mij is 1 if fi is assigned to slot sj and is 0
otherwise. For a cost function that computes a cost of c(fi, d)
associated with delaying flight fi by d minutes, the cost of

a matching is
∑n

i=1

∑n

j=1 c(fi, d(fi, sj))Mij .

Even if airlines do minimize a separable delay cost when

matching flights and slots, it is unlikely that their delay cost

function can be computed exactly from publicly available

data [8]. One way to handle this issue is to add a noise

term to the delay cost function to account for unobserved

factors that impact the cost. Assume that the actual cost of

delaying fi by assigning it to sj is c(fi, d(fi, sj))+εij . The

deterministic part of the cost that can be computed using only

observed publicly-available data is c(fi, d(fi, sj)) and the

stochastic part that accounts for unobserved factors known

only to the airline is εij . Assume that εij is identically and

independently distributed (iid) for all i, j ∈ {1, 2, . . . , n}.

This assumption is unlikely to be true in some cases because,

for example, if delays for a particular fi′ are costly in a way

that is not accounted for by the deterministic part of the

cost function, the corresponding additive cost noise random

variables εi′j ∀j = 1, 2, . . . , n may not be independent and

may all have a positive mean that other εij variables do not

have. Although unlikely in some cases, this assumption is

made because it enables the development of the heuristic

described in sub-section III-C. Additionally, assume that the

distribution of the εij variables is Gaussian with mean µ and

variance σ2.

Under these assumptions, the minimum cost perfect

matching problem faced by the airlines is

minimize
n
∑

i=1

n
∑

j=1

(c(fi, d(fi, sj)) + εij)Xij

subject to
n
∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , n}

n
∑

i=1

Xij = 1 ∀j ∈ {1, 2, . . . , n}

Xij ∈ {0, 1} ∀i, j ∈ {1, 2, . . . , n},

(1)

where Xij is 1 when fi is assigned to sj and 0 otherwise.

Since εij models factors impacting the cost that are known

by the airline but unobserved by the public, the airlines are

assumed to solve a deterministic optimization problem in

which the realized εij values for all i, j ∈ {1, 2, . . . , n} are

revealed before the optimization.

B. Estimation Problem Statement

The problem under consideration in this paper is to find

the delay cost functions and corresponding noise parameters

that maximize the likelihood of airline actions in AFPs.

More precisely, for each airline and for each candidate cost

function ck, we seek to find the noise parameters θ that
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maximize the likelihood Lk(θ) = Pr(M|θ,F ,S). If each

(F, S,M) ∈ (F ,S,M) is independent, the log-likelihood is

ℓk(θ) =
∑

(F,S,M)∈(F ,S,M)

log Pr(M |θ, F, S). (2)

The delay cost function that maximizes the likelihood is the

one for which θ values are found that achieve the largest

value for ℓk(θ) (and therefore also the largest Lk(θ)).

C. Linear Program Cost Approximate Maximum Likelihood

Estimation

The Linear Program Cost Approximate Maximum Likeli-

hood Estimation (LPCAMLE) heuristic attempts to find the

maximum likelihood estimates of parameters of a Gaussian

noise term that is added to Linear Program (LP) cost vectors.

It uses a data set consisting of LP instance coefficient values

and corresponding LP solutions, but not any samples from

the noise distribution. It is based on an approximation of the

likelihood motivated by LP sensitivity analysis referred to as

the LP Sensitivity Analysis (LPSA) approximation.

Suppose an entity solves a set of N deterministic LPs of

the form
minimize (ci + ǫi)

Txi

subject to Aixi = bi
xi � 0,

(3)

where, before the LP instances are solved, each element

of each ǫi vector is sampled independently from the same

Gaussian distribution with mean µ and variance σ2. Let θ =
(µ, σ2) denote the parameters of this Gaussian distribution.

The LP instance coefficient and solution data available when

estimating θ is {x⋆
i , Ai, bi, ci}

N
i=1, where x⋆

i is the solution of

problem instance i selected by the entity under observation.

Let J⋆(Ai, bi, ci, ǫi) be the optimal value of (3) for a

particular noise sample ǫi and for problem parameters Ai,

bi, and ci. Similarly, let x⋆,ǫi
i be optimal primal variables for

LP instance i and a particular noise sample ǫi.
LP sensitivity analysis can be used to approximate the

optimal solution of problem (3) as ǫi changes [9]. The

approximation of the solution is

J⋆(Ai, bi, ci, ǫi) ≈ J⋆(Ai, bi, c
j
i , 0) + ǫTi x

⋆,0
i . (4)

The likelihood of the solution data x⋆
i for a single LP

instance is, by definition, the probability that x⋆
i achieves the

minimum cost, given the noise distribution (parameterized by

θ) and the LP instance parameters. This probability is

Pr(x⋆
i |θ, Ai, bi, ci) = Pr

(

(ci + ǫi)
Tx⋆

i = J⋆(Ai, bi, ci, ǫi)
∣

∣ θ
)

.

Approximation (4) can be used to approximate the likelihood

of the solution data for a single LP instance:

Pr(x⋆
i |θ,Ai, bi, ci) ≈

Pr
(

(ci + ǫi)
Tx⋆

i = J⋆(Ai, bi, ci, 0) + ǫTi x
⋆,0
i

∣

∣

∣
θ
)

.

Some simplification leads to the LPSA approximation of the

likelihood

Pr(x⋆
i |θ,Ai, bi, ci) ≈

Pr
(

ǫTi (x
⋆,0
i − x⋆

i ) = cTi (x
⋆
i − x⋆,0

i )
∣

∣

∣
θ
)

, (5)

which is simply the pdf of a Gaussian random variable with

mean 1
T (x⋆,0

i −x⋆
i )µ and variance ‖x⋆,0

i −x⋆
i ‖

2
2σ

2 evaluated

at cTi (x
⋆
i − x⋆,0

i ).
LPCAMLE attempts to maximize the log-likelihood ℓ(θ):

ℓ(θ) =

N
∑

i=1

log Pr(x⋆
i |θ, Ai, bi, ci). (6)

To create a tractable problem, LPCAMLE uses the LPSA

approximation (5) to instead maximize the approximate log-

likelihood

ℓ̂(θ) =

N
∑

i=1

log Pr
(

ǫTi (x
⋆,0
i − x⋆

i ) = cTi (x
⋆
i − x⋆,0

i )
∣

∣

∣
θ
)

.

(7)

A maximization problem with objective function ℓ̂(θ)
can be solved analytically using the first-order necessary

conditions and the pdf of Gaussian random variables. The

resulting LPCAMLE estimates θ⋆ = (µ⋆, σ2⋆) are

µ⋆ =

∑N

i=1 pivi/qi
∑N

i=1 p
2
i /qi

(8)

and

σ2⋆ =
1

N

N
∑

i=1

(vi − piµ
⋆)2

qi
, (9)

where pi = 1
T (x⋆,0

i − x⋆
i ), qi = ‖x⋆,0

i − x⋆
i ‖

2
2, and

vi = cTi (x
⋆
i − x⋆,0

i ). If pi = qi = 1 for all i and the

vi are viewed as the sample data, equations (8) and (9)

simplify to the standard maximum likelihood estimates of

the parameters of a normal distribution. If x⋆
i = x⋆,0

i , then

qi = 0 and the terms in the sums in eqs. (8) and (9) are

invalid. This situation corresponds to evaluating the pdf of

a Gaussian random variable with a variance of zero in the

LPSA approximation (5). It is not clear how to handle this

situation; such instances are skipped for now.

To apply LPCAMLE to the estimation problem in sub-

section III-B, problem (1) must be posed as an LP. If the

appropriate vectors ci, bi, xi, and ǫi and matrix Ai are

constructed, the LP relaxation of the integer program (1)

is indeed identical to the LP (3). Each of the n2 elements

of the vector ǫi correspond to one εij . Due to the total

unimodularity of the appropriate Ai matrix and the integrality

of the appropriate bi vector, this LP is guaranteed to produce

the same minimum cost value as the corresponding integer

program (1), even though the LP solution may not be

integer [10]. Therefore, the LPCAMLE heuristic can be

applied in an attempt to solve the estimation problem posed

in sub-section III-B.

D. Simulation Approximate Likelihood Estimation

The likelihood can also be approximated using simula-

tions [11]. This can be accomplished by selecting a problem

instance ib randomly from the N matchings in (F ,S,M),
generating a corresponding noise sample ǫb from a distribu-

tion with parameters θ, and then solving the corresponding

LP problem instance (3) to find the minimum cost value

cTibx
⋆,ǫb
ib

for the airline matching problem (1) with noise
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sample ǫb. If this is done B times, then the simulation

approximation of the likelihood is

Pr(M|θ,F ,S) ≈

1

B

B
∑

b=1

1

{

(cib + ǫb)
Tx⋆

ib
− (cib + ǫb)

Tx⋆,ǫb
ib

(cib + ǫb)Tx
⋆,ǫb
ib

≤ ξ

}

,

(10)

where ξ is a parameter specifying how close the cost induced

by the historical solution data x⋆
ib

must be to be to the optimal

cost to be considered an optimal solution for this problem

instance with sampled noise ǫb. Here 1{a} equals 1 if the

condition a is true and equals 0 if a is false.

In this case, a set Θ = {θk}
K
k=1 of candidate values for

θ must be defined. Then, the maximum likelihood θ⋆ is

computed as

θ⋆ ∈ arg max
k=1,...,K

Pr(M|θk,F ,S), (11)

where approximation (10) is used to approximate

Pr(M|θk,F ,S).

IV. VALIDATION

A. Implementation Notes

The heuristics were implemented and tested in Mat-

lab. LP instances were solved with CVX, a package

for specifying and solving convex programs in Matlab

[12]. The set Θ contained possible values for σ2 of

{1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The mean was 0
for each θ ∈ Θ. The LPCAMLE heuristic implemented

here assumes that the noise mean is zero by setting µ⋆ =
0 in eq. (9) when computing σ2,⋆. When approximating

likelihoods with simulation as in eq. (10), B was set to 1000
and ξ was set to 0.01. These values were selected because

they performed relatively well on the problem instances

under investigation.

When comparing outcomes of the LPCAMLE heuristic

across different cost functions in sub-sections IV-C and V,

the assignment costs must be normalized to have roughly

the same magnitude to allow for fair comparisons of variance

estimates and approximate log-likelihoods. To allow for such

comparisons, the assignment cost for each cost function will

be normalized by the average observed assignment cost for

the cost function (c̄).

B. Comparison of Heuristics

Before using LPCAMLE to evaluate airline delay cost

functions, some sample estimation problem instances based

on generic LPs will be specified and solved to demonstrate

the behavior of the LPCAMLE and simulation heuristics.

For these sample estimation problem instances, Ai = A,

bi = b, and ci = c for all of the N = 1000 solved LP

problem instances in the data set. The noise parameters are

θ = (0, 25). The size of A is 100 × 50. Each element in

A was generated by sampling from a Gaussian distribution

with mean zero and standard deviation 100. Each element

in the cost vector c is sampled from a uniform distribution

on [0, 100]. The b vector is computed by post-multiplying A

TABLE I

COMPARISON OF HEURISTICS ON SAMPLE PROBLEM INSTANCES

(σ2
= 25)

Seed LPCAMLE σ
2,⋆ Simulation σ

2,⋆

0 26.8 1

1 25.9 1

2 24.8 1

3 33.6 1

4 68.1 1

by a vector of ones. For this portion of the validation, the

heuristics used the true cost vector c when estimating the

variance.

Different LP coefficients and corresponding LP solution

data sets for different estimation problem instances are gener-

ated by initializing a random number generator with different

seed values. Then, the LPCAMLE and simulation heuristics

are executed with the generated data sets to estimate the

maximum likelihood estimates for θ.

Table I shows the results of the two heuristics. For

three of the five estimation problem instances (produced

using random number generator seeds 0-2), the LPCAMLE

variance estimate σ2,⋆ is within 8% of the actual variance

σ2 = 25. For one of the other cases the estimate is off

by almost 35% and in the final case it is off by 172%. It

seems that characteristics of the problem coefficients A, b,
and c can impact the quality of the LPCAMLE estimates. The

heuristic based on the simulation approximate likelihood, on

the other hand, estimates a variance value of 1 for each of the

problem instances. This poor performance was not analyzed

in detail, but it might be related to small cost noise values

failing to perturb the problem cost vector sufficiently to drive

the solution to an x⋆,ǫ
i that is not equal to the zero-noise

solution x⋆,0
i . Furthermore, the simulation-based heuristic

requires almost 1000 seconds of computation time while the

LPCAMLE heuristic completes in about 0.5 seconds. Due to

its poor performance, no further results from the simulation-

based heuristic are presented.

C. LPCAMLE Validation with Synthetic Matching Data

The performance of LPCAMLE was investigated with

some synthetic airline matching data generated by solving

the airline matching problem (1) with known delay cost

functions and noise sampled from known distributions. This

synthetic data was based on the historical matchings of two

airlines referred to as airline E and airline G. There were

1368 matchings for airline E and 473 matchings for airline

G.

The delay cost functions will be explained in sub-

section V-A. Six of the delay cost functions that perform

relatively well on the historical matching data are investi-

gated in this validation work. They are cost functions 2, 5–8,

and 16 (see Table III).

The standard deviation of the noise (σ) was varied in this

validation work. It was assigned four values ranging from c̄
down to c̄/10. For each of two airline data sets, six delay cost

functions, and four zero-mean additive cost noise standard
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TABLE II

CANDIDATE COST FUNCTIONS WITH LARGEST APPROXIMATE LOG-LIKELIHOOD

Generating Airline E Airline G

Cost Function σ

c̄
= 0.1

σ

c̄
= 0.25

σ

c̄
= 0.5

σ

c̄
= 1.0

σ

c̄
= 0.1

σ

c̄
= 0.25

σ

c̄
= 0.5

σ

c̄
= 1.0

2 2 2 2 2 2 2 2 2
5 5 5 5 5 2 2 2 2
6 6 6 6 6 6 2 2 2
7 7 7 7 7 7 2 2 2
8 8 8 8 16 2 2 2 2

16 16 16 16 16 2 2 2 2

deviation levels, a set of synthetic minimum cost perfect

matchings were generated for the flights and slots in the

airline matchings. Then, for each of these synthetic sets of

matchings, the LPCAMLE heuristic was applied with each

of the six cost functions used as the candidate cost function.

The corresponding additive cost noise variance estimates

and approximate log-likelihood values were recorded in each

case. If LPCAMLE worked perfectly, it would produce exact

estimates of the additive cost noise standard deviation and

the cost function used to generate the synthetic data would

always achieve the largest approximate log-likelihood.

Table II shows which of the candidate cost functions

achieved the top-three largest approximate log-likelihood

values in each synthetic scenario for airline E and airline

G. For airline E, the generating cost function achieved the

largest approximate log-likelihood in 23 of the 24 instances.

For the airline G, cost function 2 (Passenger Delay) often

achieves the largest approximate log-likelihood. Airline G

used the same aircraft type for almost every flight. Also, an

annual average load factor was used for all flights. Therefore,

cost function 2 fails to differentiate between matchings and

almost any matching achieves the minimum cost. This causes

LPCAMLE to compute a relatively large ℓ̂(σ2⋆) for cost

function 2. In this sort of situation it may be wise to remove

such cost functions from consideration. If the deterministic

part of an airline’s cost function fails to differentiate between

most matchings, its optimal matchings would be determined

almost entirely by realizations of the cost noise terms. These

are assumed to depend only on factors not observed by

the public, suggesting that its matchings do not depend

on publicly-observed factors, which seems unlikely. If cost

function 2 were removed, then there would only be four

instances when the generating cost function did not achieve

the largest ℓ̂(σ2⋆).
In Fig. 1, the estimates of the normalized standard devia-

tion (σ⋆/c̄) are plotted as a function of the actual normalized

standard deviations (σ/c̄) used to generate the synthetic

matchings. For both airlines, the estimates are severe under-

estimates of the actual standard deviation values. It is not

clear why this is the case.

V. EVALUATING AIRLINE DELAY COST FUNCTIONS

A. Delay Cost Functions

A set of candidate cost functions are evaluated. The

functions depend on publicly available characteristics of a

flight fi and the minutes that the flight is delayed d. Ref. [1]
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Fig. 1. Normalized standard deviation estimates for synthetic data
generated with four normalized actual standard deviation values.

explains the 17 evaluated cost functions in detail. Those that

achieve one of the three largest ℓ̂(σ2⋆) for an airline are listed

in Table III.

TABLE III

DELAY COST FUNCTIONS

Number Name

1 On-time Performance

2 Passenger Delay

5 Time-of-Day Delay

6 Connection Delay

7 Airline Connection Delay

8 Monetary Delay

16 Connection and Monetary Combination Delay

17 Airline Connection and Monetary Combination Delay

B. Data

The historical matchings used in this study are from 32
unique AFPs and are recorded in 34 days of Expected De-

parture Clearance Time (EDCT) log files from June–August

2006. “Simplified Substitution” (SS) messages in these files

specify a set of flights, a set of slots, and the corresponding

airline-selected matching. If a few assumptions are made (see

Ref. [1]), SS messages contain enough information to define

the minimum cost perfect matching problems (1).

At any time during an AFP, airlines can submit SS mes-

sages to the FAA. Some airlines specify matchings frequently

while others do so relatively rarely. There were SS messages

specifying matchings for 18 airlines, but 11 of those airlines

submitted messages less than 200 times and were therefore

not investigated. Validation efforts not reported here due to

space constraints suggest that at least 200 matchings are

needed for one of the metrics used in this paper, so results for
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these 11 airlines are not presented. Also, each SS message

can specify as many flights and slots as the airline would like

to match. For most airlines, the majority of matchings involve

less than 10 flights and slots. However, some matchings

contain more than 100 flights and slots.

C. Results

The cost functions with the three largest ℓ̂(σ2⋆) values for

each airline, along with corresponding estimates of σ⋆/c̄,
are shown in Table IV. See Table III for the names of

the cost functions and Ref. [1] for a detailed description

of each. Smaller σ⋆/c̄ values indicate that the the airline

matchings are more likely with additive cost noise values

that are relatively small compared to the deterministic part

of the cost functions. Most are between 0.1 and 0.7, but

results in sub-section IV-C suggest that these estimates are

probably low.

TABLE IV

COST FUNCTIONS WITH LARGEST APPROXIMATE LOG-LIKELIHOOD

Airline 1
st1
st
1
st σ

⋆

c̄
2
nd2
nd

2
nd σ

⋆

c̄
3
rd3
rd
3
rd σ

⋆

c̄

A 7 0.487 6 0.539 1 1.216

B 7 0.454 5 0.509 17 0.525

C 6 0.587 16 0.615 7 0.623

D 7 0.037 17 0.133 16 0.246

E 6 0.369 16 0.336 17 0.351

F 16 0.064 17 0.083 6 0.050

G 2 0.051 17 0.164 8 0.185

Cost functions 6, 7, 16, and 17, which are all based on

Connection Delay, achieve relatively large approximate log-

likelihood values for most airlines. These functions attempt

to capture the fact that delaying flights bound to hub airports

is especially costly because such flights are likely to involve

passengers, crews, and aircraft that need to connect to other

flights. The cost is computed as the minutes of delay times a

multiplier that is 2 for flights bound for high-connection-rate

airports (hubs), 1.5 for flights bound for medium-connection-

rate airports, and 1 for all other flights [7].

VI. CONCLUSIONS

Valid models of airline behavior are essential for mean-

ingful air traffic management research. In this paper, airline

actions in Airspace Flow Programs were used to evaluate

several proposed flight delay cost functions. It is assumed

that airlines solve a minimum cost perfect matching prob-

lem when matching flights to slots. Unobserved aspects of

airline costs are accounted for by adding a Gaussian noise

term to the cost functions. A heuristic was developed to

find cost functions and corresponding noise parameters that

maximize an approximation of the log-likelihood of airline

actions during 32 Airspace Flow Programs in the summer of

2006. When applied to estimation problem instances based

on linear programming problem coefficients and solution

data generated with known noise parameters, the heuristic

can more accurately estimate noise parameters than a sim-

ple simulation-based approach. Validation efforts based on

synthetic airline action data generated with known delay

cost functions and noise parameters demonstrates that the

heuristic is in many cases able to correctly identify as most

likely the delay cost function that was used to generate the

synthetic data. However, the heuristic also under-estimates

the magnitude of the cost noise variance for these problem

instances. Costs that are proportional to the length of the

delay, but with proportionality constants that are larger for

flights bound to hub airports, maximize the approximation

of the log-likelihood of the historical matchings of most

airlines. Finally, the corresponding estimates of the standard

deviations of the cost noise terms, expressed as a fraction

of the average assignment cost for the historical matchings,

ranged from 0.1 to 0.7.
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