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This paper describes a class of traffic flow management-action-embedded sector-demand prediction models. The

models consist of the open-loop prediction, which is the prediction without management action, and the

management-actionmodel. The use of periodic autoregressivemodeling approach enables themodel to capture both

themidterm (30min to 2h) trendbased on the historical data and the short-term (less than 30min) transient response

based on recent observations. For severe weather days, both storm precipitation and echo tops were used to form a

weather index to approximate themanagement actions due to reduced capacity. In addition to traditional trajectory-

based sector-demand prediction methods, which predict only the open-loop behavior of the National Airspace

System adequately for short durations of up to 20 min and are vulnerable to uncertainties, this class of models

provides a reliable short- to midterm (both open- and closed-loop) sector-demand prediction that accounts for

various traffic flow management actions. A combination of closed-loop and open-loop models provide decision-

makers the full range of traffic behavior.

I. Introduction

TOENSURE smooth air traffic flow and safety in the presence of
disruptions caused by uncertainties, innovative modeling and

design methods are needed in traffic flow management. One of the
main functions of traffic flow management is to predict and resolve
demand-capacity imbalances at the sector level. Thus, an accurate
sector prediction model that can account for traffic flow uncertainty
and weather impact is an essential component of traffic flow
management.

Efforts have been made in the past to perform sector-demand
predictions. Traditionally, models used in air traffic control and flow
management are based on simulating the trajectories of individual
aircraft. Deterministic forecasting of sector demand is routinely done
within the enhanced traffic management system (ETMS), which
relies on the computation of each aircraft’s entry and exit times at
each sector along the path of flight. Gilbo and Smith [1] proposed,
acknowledging the uncertainty in the predictions, a regressionmodel
for improving aggregate traffic demand prediction in ETMS. Amore
recent traffic flow management simulation tool, the Future Auto-
mation Concepts Evaluation Tool (FACET) [2], was used to propa-
gate the trajectories of the proposed flights forward in time and use
them to count the number of aircraft in each sector for demand
forecasting and establish confidence bounds on the forecasts [3].
These trajectory-based models predict the behavior of the National
Airspace System adequately for short durations of up to 20 min and
their accuracy is impacted by weather and trajectory prediction
uncertainties [4–6]. In addition, these prediction models are open-
loop, which means the traffic flow management (TFM) actions are
not accounted in themodels; therefore, the prediction does not reflect
the actual sector demand after the TFM management actions.

The objective of this paper is to develop an empirical sector-
demand prediction model that accounts for TFM actions, including

air traffic control and airline actions, and that accounts for both short-
term (less than 30 min) and midterm (30 min to 2 h) predictions. The
model consists of two parts: the open-loop prediction and the TFM
action model. The open-loop predictions, similar to the traditional
methods, are used to determine the possibility of demand-capacity
imbalances at a future time, and help decide whether to activate the
TFM action. The TFM action model simulates the demand reduction
caused by the TFM actions. The closed-loop prediction represents
the net result of the open-loop prediction and the TFM actions. The
periodic autoregressive model and its variants [7,8] were used to
build the model. The model considers both historical traffic flows to
capture the midterm trend and flows in the near past to capture the
transient response. In addition, for severeweather cases, theweather-
impacted TFM action was modeled using weather forecast inform-
ation. The proposed model provides both open- and closed-loop
sector-demand predictions. Open-loop prediction is adequate for
short durations. When looking at predictions for long durations,
open-loop models produce large errors due to their inability to
capture traffic initiatives and airline actions during the planning
period. A combination of closed-loop and open-loopmodels provide
decision-makers the full range of traffic behavior.

The remainder of the paper is organized as follows. Section II
provides the sector-demand data and a description of the open- and
closed-loop sector-demand prediction models. Next, in Sec. III, a
weather factor is introduced and theTFMactionmodel that considers
weather is described. The results and performance of the models are
demonstrated in Sec. IV. Finally, a summary and conclusions are
presented in Sec. V.

II. Data and Model

A. Sector-Demand Data

The air traffic demand data were recorded from the Aircraft
Situation Display to Industry (ASDI) data generated by the Federal
Aviation Administration’s ETMS. The ASDI data provide the
locations of all aircraft at 1min intervals. The sector demand, defined
as the number of aircraft in each sector at a given time, can be
computed using the ASDI data. Since traffic flow management
decisions are made by comparing the peak number of aircraft in a
sector during a 15 min interval with the sector’s monitor alert param-
eter (MAP) value, the 15 min peak sector demand was used to build
the models. A day is defined as a 24 h interval starting at 0400 hrs
local time, since most of the aircraft departing on the previous day
would have landed before 0400 hrs. The 15min peak sector demand,
denoted as dk, where k� 1; . . . ; 96.
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The average trend of sector demand on different days can be
observed in Fig. 1, which shows the variation of 15 min peak sector
demand in September 2007. In this figure, each horizontal strip
represents one day of 15 min peak sector demand, and each vertical
strip represents the peak sector demand at the same time of day dur-
ing the entire month. As shown, the horizontal strips on 1 September,
8 September, 15 September, 22 September, and 29 September, which
are Saturdays, have lower demands than the others. The blue vertical
regions on the left and right show the offpeak traffic in the early
morning and the late night. A vertical light blue region at around
1200 hrs divides the sector demand into a morning rush left of the
region and an afternoon peak right of it. The sector-demand predic-
tion model presented in the next section captures these variations in
the demand.

B. Demand Prediction Model

Sector demand, defined as the number of aircraft in a sector, is the
result of planned inflow and outflow and TFM actions. Figure 2a
shows the block diagram of the current sector-demand system,where
dk is the sector demand at the kth time step and dk�p is the sector
demand at the (k� p)th time step. In the system, the traffic flow
manager monitors the sector-demand prediction based on enhanced

traffic management system (ETMS), denoted as d̂ETMS
k�p ; if the

prediction is high, TFM is activated to reduce the demand in the
sector. The top half of the diagram, shown in the dashed box, is
considered as an open loop; the bottom half, with the TFM action, is
considered as a feedforward loop with negative gain. In the sector-
demand prediction model, shown in Fig. 2b, fopenk;p is the open-loop

predictionmodel and d̂open
k�p is the open-loop prediction, which is used

to determinewhether to activate the TFM action.When d̂open
k�p is high,

TFM is active. fTFMk;p is the model of the TFM action based on the

open-loop prediction. dopen
k is the actual open-loop sector demand,

which is the sum of d̂open
k�p and the open-loop prediction error,eopenk .

eTFMk is the error of the TFM action model. The model in Fig. 2b can
be formulated as

dopen
k�p � f

open
k;p �d1 . . .dk� � eopenk

dk�p � dopen
k�p � �fTFMk;p �d

open
k�p� � eTFMk � (1)

To implement the prediction model in Eq. (1), fopenk;p and fTFMk;p need

to be identified using historical data. In reality, it is not possible to
identify the open-loop sector demandwhen TFM is in action because
of the absence of data to verify the validity of the models during high
demand. However, the open-loop model can be identified using data
during low demand, since no TFM action is involved. With the
assumption that the behavior of open-loop models are similar during
low- and high-demand periods, the open-loop prediction model
validated for low demand is also used during high demand.

C. Periodic Autoregressive Sector-Demand Model

Autoregressive models have been used for short-term hourly air
traffic delay prediction [9,10]. This research extends the delay
prediction approach to open-loop sector-demand prediction. The
TFMactionmodel is incorporated in the predictionmodel and can be
identified once the open-loop model is identified.

A 24 h period, starting at 0400 hrs local time, is divided into 96
15min intervals. Given the observed 15min peak sector demands for
n days, the sector-demand data matrix is defined as

D �
d1;1 d2;1 . . . d96;1

..

. ..
. . .

. ..
.

d1;n d2;n . . . d96;n

2
64

3
75 (2)

where di;j represents the 15 min peak sector demand at time step i on
day j. For September 2007,D has a dimension of 30 by 96, and Fig. 1
shows the image of the matrixD. Letting dk be the kth column ofD,
the p-step-ahead open-loop sector-demand prediction model at the
kth time step can be described in the form of a first-order periodic
autoregressive model:

d open
k�p � �k;pdk � �k;p � eopenk (3)

where �k;p and�k;p are the coefficients that map the sector demand at
time k to the open-loop sector demand at time k� p. For low-
demand time periods, TFM is inactive; therefore, open-loop demand
is the same as actual demand. A sector-demand threshold dthreshold,
usually a small number lower than the sector MAP value, is used to
definewhether the demand is high or low. The demand is classified as
high when dthreshold > 0 and low when dthreshold � 0. Consider the
sector demands that satisfy dk�p;j � dthreshold, the least-squares
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Fig. 1 Fifteen-minute peak sector demand at sector ZID93 in September 2007.
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solution of �k;p and �k;p that minimizes �eopenk �Te
open
k can then be

solved explicitly [11]. For high-demand cases, TFM action is active.
The action is modeled as a negative linear feedforward gain based on
the open-loop prediction and the threshold, formulated as

d k�p � �̂k;pdk � �̂k;p � �k;p��̂k;pdk � �̂k;p � dthreshold�� � ek

(4)

where �̂k;p and �̂k;p are the least-squares solution of Eq. (3) using
low-demand data, �k;p is the feedforward gain, and ek is the error of
the model. Note that �k;p is equal to zero for low-demand cases.With

�̂k;p and �̂k;p known, the least-squares solution of �k;p for high-
demand cases, denoted as �̂k;p, can be solved explicitly using high-
demand data.

On a day m other than the n days in the data set, the p-step

prediction of the sector demand at the kth time step, d̂k�p;m, based on
the observed sector demand, dk;m, can then be expressed as

d̂
open
k�p;m � �̂k;pdk;m � �̂k;p
d̂k�p;m � d̂openk�p;m � �̂k;p�d̂

open
k�p;m � dthreshold� (5)

In the model, �̂k;p and �̂k;p, identified from the historical data with
lowdemand, capture the periodic featureswith noTFMaction during
a day; the observed sector demand dk;m provides the transient
information to the open-loop prediction; �̂k;p, identified from the
historical data with high demand, models the TFM actions. The
model in Eqs. (4) and (5) is referred to as the periodic autoregressive
(PAR) sector-demand prediction model.

As an example, peak sector-demand data in August 2007 were
used to construct the data matrix in Eq. (2). Equations (3) and (4)

were used to identify themodel parameters �̂k;p, �̂k;p, and �̂k;p, where
k� 1; . . . ; 96 and p� 1 for one step, or 15-min-ahead prediction.
The peak sector demands on 3 September 2007 were predicted using
Eq. (5). The prediction results for sector ZID93 are shown in Fig. 3.
The black dots represent the sector demand in a 1 min interval, the
blue line represents the 15 min peak sector demand, the green line
represents the 15-min-ahead sector-demand prediction, and the red
line is the MAP value. The root-mean-squared (rms) error between
the actual peak sector demand and the 15 min demand prediction for
the day is 1.96. The rms error during the hours that most aircraft fly,
0700 to 2300 hrs EDT, is 2.23. The rms error when the demand is
great than 50% of the MAP value is 2.63.

The model can be extended by using the cumulative sum of the
past sector demands as an observation instead of using a single
observation dk;m in Eq. (5), since the sum includes more information
than a single observation and has less noise compared with the single
peak sector demand. Following the definition of the sector-demand
matrixD in Eq. (2), where dk is the kth column ofD, the cumulative
p-step-ahead sector-demandmodel at time step k can be described in
terms of the cumulative sum of q past sector demands as

dk�p � �k;p
Xk

i�k�q�1
di � �k;p

� �k;p
�
�k;p

Xk
i�k�q�1

di � �k;p � dthreshold
�
� ek (6)

where �k;p and �k;p are the coefficients that map the cumulative
sector demand at the kth time step to the sector demand at the (k� p)
th time step, and �k;p is the TFM action gain. Once the least-squares
solution of coefficients �k;p, �k;p, and �k;p are identified, the p-step
prediction of the sector demand at the kth time step for a day m,

d̂k�p;m, based on the observed cumulative sector demand,

Xk
i�k�q�1

di;m

can be expressed as

d̂
open
k�p;m � �̂k;p

Xk
i�k�q�1

di;m � �̂k;p

d̂k�p;m � d̂openk�p;m � �̂k;p�d̂
open
k�p;m � dthreshold� (7)

III. Weather Factor

Weather has a big influence on air traffic sector demand and the
uncertainty in weather may cause error in the predictions [5,12]. If a
severe storm blocks a sector or regions near it, the sector capacity
may drop dramatically, causing the TFM in action to reduce the
sector demand [13,14]. Aweather factor that models the TFM action
on severe weather days in the sector-demand prediction is derived in
this section.

To model the weather impact on TFM action, an accurate weather
forecast product with a high update rate is required. In addition, to
capture the impact on all low, high, and superhigh sectors, the storm
echo tops information is useful. The weather data used in this paper
was provided by the Corridor Integrated Weather System (CIWS)
[15], which provides both accurate precipitation and echo tops data
and is updated every 5min. In addition, CIWS provides precipitation
and echo tops forecasts at 5 min intervals up to 2 h in the future.

Theweather factor used tomodel the TFMactionwas chosen to be
the sectorweather index, defined as the percentage of area covered by
the storm with precipitation vertically integrated liquid (VIL) level 3
and above. Only stormswith the echo tops above the lower boundary
of the sector are considered. The sector weather index at time k is
formulated as

wk �
Awk
A

(8)

where A is the area of the sector and Awk is the area of the sector
covered by storms with the echo tops at or above the lower bound of
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the sector. The sector weather index is a number between 0 and 1 and
is often expressed in terms of a percent in the figures in this paper.
Note that if time k is a future time, the weather forecast is used to
determine Awk . It is possible to use other definitions of a sector
weather index [13,14].

Figure 4a shows a snap shot of the CIWS data for the high-altitude
sectors at Indianapolis center (ZID) on a severeweather day. The red
spots indicate the storms with VIL level 3 and above, and the echo
tops at 35,000 ft. As shown in this figure, most of the sector ZID93 is
covered by the storm. The sector weather index for ZID93 on
16 August 2007 is shown in the red curve in Fig. 4b. Also shown is
the actual sector demand on the same day in the blue curve. Note that
the sector weather index is greater than 30% from 1800 to 2000 hrs
Eastern Daylight Time (EDT), and the sector demand clearly drops
during the same period.

Traffic reduction due to weather impact can be modeled in many
different ways [16]. In this research, the open-loop prediction was
first estimated, and then the prediction was adjusted by the TFM

action based on the sector weather index. Assume that the TFM
action is active when the sector weather factor exceeds wlow, and
TFM blocks out the entire sector when the weather factor reaches
whigh. The sector-demand reduction rate is modeled as the power law

distribution, 1 � ��wk � wlow�=�whigh � wlow���, where � is the
power of the distribution. To reflect the thresholds, the sector weather
index in Eq. (8) is redefined as

wk �

8<
:
wlow if Awk =A � wlow

Awk =A if wlow < A
w
k =A < whigh

whigh if whigh � Awk =A
(9)

Tomodel theTFMaction on the sector-demandpredictionmodel, the
weather forecast is used to compute the predicted sector weather
index. Assume at time k, the predicted sector weather index at time
k� p is wk�p, the PAR sector-demand prediction model in Eq. (7)
can be rewritten as
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d̂
open
k�p;m � �̂k;p

Xk
i�k�q�1

di;m � �̂k;p

d̂k�p;m � d̂openk�p;m �
�
wk�p � wlow

whigh � wlow

�
�

�d̂openk�p;m� (10)

Using the echo tops information provides a more representative
weather index, especially for the high sectors. If there are stormswith
low echo tops located at some high sectors, the weather might have
minimal impact on the sector demand. The sector demand and
weather index for sector ZID93 on two different days is shown in
Fig. 5. Both days have severe storms, but one has high echo tops,
while the other has low echo tops. The sector demands on severe
weather days were compared with the average sector demand on the
rest of the days in the same month. In Fig. 5a, the sector demand on
16August 2007 is lower than the average between 1800 and 2000 hrs
EDT because of the high weather index during the period, as
indicated in Fig. 5c. The blue line in Fig. 5c shows theweather index
considering the area covered by storms without the echo tops
information, and the red line is the weather index considering the
echo tops at 35,000 ft and above. In this case, the two lines are close.
This suggests that there are severe storms in the area and most of the
echo tops are higher than the lower bound of sector ZID93. On the
other hand, on 23 October 2007, there is no demand reduction
compared to the average of the other days in October 2007 during
1800 and 2000 hrs EDT, shown in Fig. 5b, even though there are
storms in the sector during the period, as shown in Fig. 5d. The red
line in Fig. 5d is substantially lower than the blue line, which means
even though there are storms in the sector, most the echo tops are
lower than the low boundary of the sector and have minor impact on
the sector demand. In the next section, the sector weather index refers
to the index with the echo tops information.

IV. Results

The sector demands of 25 high and superhigh sectors in ZID were
investigated in this research. The sector demands for the month of
August 2007 were used to build the PAR sector-demand prediction
model, described in Eqs. (2) and (4). The time step used in themodels
is 15 min. Once the parameters were identified, Eq. (7) was used to
perform the sector-demand prediction for the month of
September 2007. Starting from the 15 min prediction model, up to
2 h prediction model were built and evaluated. The results of four
superhigh sectors ZID91, ZID92, ZID93, and ZID94, and four high

sectors ZID81, ZID82, ZID83, and ZID84 in the southwest region of
ZID were presented.

The prediction results for the eight sectors are summarized in
Table 1. Only the errors from 0700 to 2300 hrs were computed. The
results include open-loop predictions on low-demand days, when
TFM is inactive, and closed-loop predictions when TFM is activated.
Note that the errors of the PAR model are not sensitive to the look
ahead time. In general, the errors are larger with longer look ahead
time, but only slightly. The errors of the 120 min prediction is 2.97%
larger than the 15 min prediction on average. For all the high and
superhigh sector in ZID, the results are similar. The errors are
between 1.77 and 2.44 for the 15 min prediction, and between 1.82
and 2.56 for the 120 min prediction. Even though the differences
between the errors are small, the same trends hold for the majority of
sectors tested.

When the predicted sector-demands are lower than the demand
threshold dthreshold, defined as sector MAP value subtracted by 4, the
TFM actions are inactive so the model is open-loop. When the
predicted demand is higher than dthreshold, TFM actions are activated
so the closed-loop predictions are computed. Among the sectors
tested, the TFM actions in the model are more active in ZID81 and
ZID93, as more occurrences of TFM actions were triggered. The
prediction errors of open-loop predictions on low-demand days, and
closed-loop prediction at ZID81 and ZID93 are summarized in
Table 2.

The sector-demand prediction for bad weather days uses the
weather factor described in the previous section to model the TFM
action, formulated in Eqs. (9) and (10), withwlow � 0,whigh � 1, and
� � 1. The days with peak weather factors greater than 30% are
considered bad weather days. For the days and sectors tested, there
are four cases of severe weather periods: ZID83 on 16 August 2007
between 1600–2200 hrs EDT, ZID93 on 16 August 2007 between
1600–2200 hrs EDT, ZID82 on 21 August 2007 between 0600–
1400 hrs EDT, and ZID92 on 21 August 2007 between 0800-1400
EDT, shown in Fig. 6. Since all these cases happened inAugust 2007,
the model is built using data for July 2007. Two types of weather-
impacted TFM action models are built: one uses the actual weather
information and the other uses the forecast weather information.
Using the actual weather information represents the cases with
perfect weather forecast. It is used to evaluate the impact of weather
forecast accuracy on the model.

The average closed-loop prediction errors of the four severe
weather periods in August 2007 are shown in Fig. 7. It is noted that in
all four cases, both the model using actual weather information (red
dashed line) and the model using forecast weather (green dashed–
dotted line) produce smaller errors than the open-loop model (blue
solid line). The model using forecast weather performs as well as the
model using actual weather when the prediction time is small (less
than 30 min). However, with longer prediction time (more than
60 min), the performance starts to decay and the errors are closer to
the open-loop model. As an example, in Fig. 7b, the closed-loop
sector-demand prediction model using actual weather information
improves the 15 min prediction over the open-loop model by 36%,
the 60 min prediction by 43%, and the 120 min prediction by 41%.
For themodel using forecast weather, the improvement is 37% for the
15 min prediction, 44% for the 60 min prediction, and down to 23%
for the 120 min prediction. This suggests that with longer prediction
time, the forecast inaccuracy might effect the performance of the
TFM action model, resulting in larger error in the prediction model.

Table 1 Sector-demand prediction errors of the PAR model in

September 2007 (the unit is the number of aircraft)

Sector Average prediction rms error from 0700 to 2300 hrs EDT
Name MAP 15 min 30 min 45 min 60 min 90 min 120 min

ZID81 17 2.20 2.30 2.31 2.31 2.29 2.31
ZID82 16 1.77 1.82 1.84 1.77 1.80 1.82
ZID83 16 1.81 1.83 1.84 1.83 1.84 1.85
ZID84 16 2.09 2.13 2.10 2.12 2.10 2.07
ZID91 19 2.34 2.42 2.43 2.39 2.43 2.46
ZID92 17 1.92 1.98 1.95 1.96 1.98 1.99
ZID93 19 2.44 2.55 2.54 2.52 2.59 2.56
ZID94 17 2.19 2.26 2.27 2.23 2.24 2.23

Table 2 Open- and closed-loop sector-demand prediction errors of the PAR model in

September 2007 (the unit is the number of aircraft)

Sector Average prediction rms error from 0700 to 2300 hrs EDT
Name MAP Type 15 min 30 min 45 min 60 min 90 min 120 min

ZID81 17 Open 2.20 2.30 2.33 2.32 2.30 2.25
ZID81 17 Closed 2.20 2.30 2.31 2.31 2.29 2.31
ZID93 19 Open 2.39 2.50 2.50 2.50 2.53 2.56
ZID93 19 Closed 2.44 2.55 2.54 2.52 2.59 2.56
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V. Conclusions

A class of periodic autoregressive (PAR) models with
management-action-embedded for sector-demand prediction is used
for predicting air traffic demand in a sector between 15min and 2 h in
the future. The open-loop model was first identified using low-
demand data, assuming no traffic flow management (TFM) action,
then the TFM action model was identified using high-demand data.
The closed-loopmodel is the net result of the open-loop and the TFM
action models. The proposed PAR model captures both the midterm
trend based on the historical data and the short-term transient
response based on the near-past observation. For the sectors tested,
the model provides the demand predictions with an average root-
mean-squared (rms) error between 1.77 and 2.44 in the 15 min
prediction and between 1.82 and 2.56 in the 120 min prediction. The
performance of the prediction only decays slightly as the prediction
interval is increased from 15 min to 2 h, with an error increase of
2.97%. For the sector-demand prediction in the presence of severe
weather, the paper introduced the concept of a weather factor to
model the TFM actions. For severe weather days, the model uses the
storm precipitation and echo tops to form the TFM action model
using the weather factor and then adjusts the open-loop prediction.
The model improves the closed-loop sector-demand prediction by as

much as 37% for the 15 min prediction, 44% for the 60 min predic-
tion, and 23% for the 120 min prediction on the days and sectors
tested. In addition to traditional trajectory-based sector-demand
prediction methods that predict only the open-loop behavior of the
National Airspace System adequately for short durations of up to
20min and are vulnerable toweather uncertainties, themanagement-
embedded PAR models provide a reliable short- to midterm (both
open- and closed-loop) sector-demand prediction that accounts for
non-weather- and weather-impacted TFM actions. A combination of
closed-loop and open-loopmodels provide decision-makers with the
full range of traffic behavior.
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