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Abstract

The purpose of this study is to investigate the
effects of efficient route structure in the extended
terminal airspace area on arrival scheduling perfor-
mance. This paper will provide reasonable guide-
lines for optimal route topology in the extended
terminal area by considering the uncertainties present
in real operations. In a previous study, a Mixed In-
teger Linear Programming (MILP)-based schedul-
ing algorithm proved to generate more optimal
scheduling results than a traditional First-come-
First-Served (FCFS) scheduler. However, an ex-
pensive computational cost associated with exten-
sive search process limited its usage to a small
number of flights in a dense terminal environment.
Heuristics based on FCFS scheduling were intro-
duced to alleviate this computational limitation.
However, that heuristic was not sufficient to ac-
commodate the amount of traffic associated with
dense terminal operations. In this study, we intro-
duce a Genetic Algorithm (GA) as an alternative
heuristic for queuing aircraft and route assignment
to reduce the computational cost dramatically. To
take into account realistic operations, a dynamic
planner framework is constructed that integrates
the GA heuristics-based scheduler with a stochas-
tic trajectory simulator. Uncertainty quantifica-
tion and propagation along the routes are imple-
mented in the trajectory model. The trajectory
model is simulated based on the Scheduled Times
of Arrival (STAs) provided by the scheduler. As

a practical application of the proposed scheduler
to the dense terminal environment, a design of an
optimal route structure is carried out for the termi-
nal airspace represented in cartesian coordinates.
The effects of airspace topologies on the scheduling
performance are investigated and numerous route
structures with different merge topologies are con-
structed. An optimal merge topology is identified
by comparing their scheduling performances and
the resulting optimal route structure is validated
by the dynamic planner framework. Finally, the
sensitivities of the scheduling performance with re-
spect to the uncertainty quantification and propa-
gation modeling are discussed.

Introduction

A concept of advanced terminal airspace area
operations is part of the Next Generation Air Trans-
portation System (NextGen) efforts to accommo-
date expected increase in the demand and provide
a higher level of throughput at the airports and
within en route airspace [1, 2, 3]. Scheduling opti-
mization problems in dense terminal airspace area
operations are drawing interest [4], since the in-
crease of airspace capacity is becoming more im-
portant to accommodate large air traffic flows in
that environment. The use of scheduling algo-
rithms more efficient than the traditional FCFS
approach is a way to increase a way to increase
throughput and efficiencies in congested terminal
airspace compared to the FCFS scheduler. On the



other hand, it is known that the route topologies
in the extended terminal airspace play an impor-
tant role in the scheduling performance. Efficient
scheduling and route assignment directly affect im-
portant performance metrics such as runway de-
lays, throughput, fuel efficiency, and robustness to
uncertainties in operations. However, despite the
realization of the importance of the route topology,
few extensive studies of the problem have been re-
ported.

The purpose of this paper is: 1) to investigate
optimal and efficient scheduling algorithms for a
dense terminal airspace operation that yield bet-
ter performance compared to the traditional FCFS
approach, and 2) to design an optimal route struc-
ture for the extended terminal area.

A scheduling algorithm based on MILP has
been successfully used in airport surface manage-
ment due to its ability to optimize both the ar-
rival/departure sequence and their scheduling [5].
However, due to the expensive computational cost
attributed to the branch and bound search algo-
rithm, only a limited number of flights, typically
less than 40, were allowed in the scheduling. The
application of MILP-based scheduling algorithms
to the dense terminal airspace operation has been
less effective. Consideration of hundreds of flights
in the span of a couple of hours typical of the
dense terminal airspace operation dramatically in-
creases the size of the MILP formulation and the
corresponding computation burden easily exceeds
the available computing resources. In a previous
study, a heuristics-based MILP formulation was
introduced in order to reduce computational bur-
den and applied it to metroplex operations dur-
ing their busiest operations [6]. However, the cost
for the branch and bound search is still expensive
though not as prohibitive as in the original MILP
formulation.

The combination of GA-based heuristics and a
Linear Programming (LP) method was proposed
by Capozzi et al. [8] This is the method that is
adopted in the current work. It explicitly separates
the search for the optimum binary variables of
route assignment and aircraft sequencing from the
solution procedure for the continuous scheduling
variables. GA-based MILP optimization scheme
is able to find the optimal solution in significantly
less computational time on the example problem
considered.

A central focus of the current work is the de-
sign of an optimal route topology in the extended
terminal area using the GA-based MILP sched-
uler. This work will also use with flight trajec-
tory uncertainty which is different from the previ-
ous work that held an unrealistic premise that de-
tailed flight intent information including the tran-
sit times is known a priori. This would assume
that one snapshot of the planning is sufficient to
predict the scheduling performance. However, this
is not true in the real-time simulation where un-
certainties are present in flight trajectories and the
schedules of the following flights are dynamically
updated later in time based on the schedules of the
previous flights.

In order to overcome the above issues, we de-
veloped a dynamic planner framework that period-
ically updates the flight schedules to handle uncer-
tainties. The dynamic planner consists of separate
modules: a planner and a simulator. Uncertainty
is implemented in the trajectory model of the sim-
ulator to account for aircraft arrival time errors.
The planner adds an extra separation buffer at the
scheduling points to cope with these inter-arrival
errors.

As a practical application of the heuristics-based,
stochastic schedulers to dense terminal airspace
simulation, a design of an optimal route structure
in the extended terminal airspace area is carried
out. Key design parameters are the number of
merge points and their locations. First, we con-
struct five distinct route structures with various
merge topologies. The scheduling performance is
evaluated for each topology using the stochastic
FCFS heuristics-based scheduler and a dynamic
planner framework is applied to each topology in
order to validate the predicted scheduling perfor-
mance. It is demonstrated that the largest sepa-
ration amount required at all scheduling points is
a dominant factor in scheduling performance.

Finally, more generalized airspace topologies
are considered. To investigate the sensitivities of
the merge topology to the uncertainty modeling,
three types of uncertainty distributions are con-
sidered: a constant, linear and quartic increment
of the uncertainty per unit route length. The com-
parison of the corresponding scheduling results show
that: 1) there exist optimal merge locations in the
extended terminal airspace area, 2) the optimal
merge locations tend to be positioned where large



uncertainties are present so that pilot’s control ef-
forts reduce the local uncertainties at the control
point.

The rest of this paper is organized as follows:
First, the basic formulation of the original MILP
algorithms is explained, and the objectives and
constraints for our route assignment and schedul-
ing problem are defined. Second, a number of
heuristics are introduced into the original MILP
formulation as ways to reduce computational cost.
Third, the dynamic planner framework with uncer-
tainty modeling and extra separation buffers are
detailed. Finally, a design of optimal route struc-
ture in terms of the merge topologies is discussed
and followed by conclusions and future work.

Problem Formulation

We apply a MILP-based formulation to the
scheduling problem in the extended terminal airspace
area, from the entry fixes to runway, and only the
arrival portion of the scheduling will be considered.
The plan consists of a time-constrained route for
each aircraft in the demand set, with STA specifi-
cations at control points along each route, as dic-
tated by separation rules, such that the resulting
movement plan for all aircraft in the demand set
is conflict-free.

Basic Mixed Integer Linear Program-
ming

A MILP scheduler has advantages in the schedul-
ing problems over the traditional FCFS scheduler [9].
The design variables can be freely chosen specifi-
cally to a problem as forms of binary variables and
continuous variables. However, the computational
cost of a branch and bound search algorithm is ex-
pensive and its scalability with the problem size
is rather poor and a number of heuristics to re-
duce the computational burden will be explained
in later sections.

Initial Demand Set

Let F ,R, and P define a set of flights, available
routes, and scheduling points, respectively, and
NF , NR, and NP are the total number of flights,

routes, and scheduling points in the demand set.

F = {fj | 1 ≤ j ≤ NF } = {f1, f2, ..., fNF
}

R = {rj | 1 ≤ j ≤ NR} = {r1, r2, ..., rNR
}

P = {rj | 1 ≤ j ≤ NR} = {p1, p2, ...pNP
}

We further presume the existence of functions
that select the subset of routes from R that are
feasible for a given flight f ∈ F and the subset of
points from P that are feasible for a given route
r ∈ R.

Rf = {rk | all possible routes that flight (1)

f can fly, k ∈ {1, 2, ..., NR(f)}}

Pr = {pk | ordered set of scheduling points (2)

on the route r, k ∈ {1, 2, ..., NP (r)}}

where NR(f) is the number of all routes that flight
f can fly, and NP (r) is the number of all the
scheduling points on route r. Then, it can be eas-
ily inferred that a set of total routes and the points
are the superset of Rf and Pr, respectively, and
the relation is represented as follows:

R =
⋃
f∈F
Rf and P =

⋃
r∈R
Pr

Decision Variables

Given the notation in the previous section, the
decision variables of interest for this problem can
be defined:

• Af,r - A binary route assignment variable
that takes on the value of 1 if flight f is as-
signed to the route r and zero otherwise.

• Tf,r,p - A continuous variable representing
the time that flight f is scheduled to cross
the scheduling point p on route r, where f ∈
F , r ∈ Rf , and p ∈ Pr.

• Sf,f ′ ,r,r′ ,p - A binary variable that takes on
the value of 1 if flight f on route r is se-
quenced prior to flight f

′
on route r

′
at shared

scheduled point p, where f ∈ F , r ∈ Rf ,
r
′ ∈ Rf ′ , and p ∈ Pr ∩ Pr′ 6= ∅.



Objective and Constraints

For the purposes of this paper, the objective
function is defined so as to minimize the total time
required for all flights to reach the end of their
route, i.e., the runway threshold:

J =
∑
f∈F

∑
r∈Rf

Af,rTf,r,pF (3)

The problem constraints are as follows:

• Assignment to Only One Route. Each flight
can be assigned to one and only one route.

• Crossing Time at Initial and Final Point. If
a flight is assigned to a given route, then its
start time on that route must be no earlier
than the earliest feasible time on that route,
TEf,r, and no later than the latest feasible

time, TFf,r.

• Ordering Constraint at Potentially Shared
Scheduling Points. For each pair of flights
and each pair of route assignment options
that share a common scheduling point, the
order in which the flights are sequenced at
the common point must be uniquely speci-
fied.

• Separation Constraint. At each common schedul-
ing point, successive aircraft must be sepa-
rated by a minimum time that is potentially
intersection-dependent.

• Transit Time Constraints. In order to be
physically realizable, the travel time between
scheduling points must be greater than the
minimum possible travel time and should be
bounded by the maximum “delayability” of
the flight between the scheduling points.

Heuristics-Based Schedulers

One of the drawbacks of the MILP-based sched-
uler is its prohibitive computational cost. How-
ever, observation of the branch and bound search
procedure indicates a large portion of search time
is spent on evaluating unrealistic combinations of
route assignment and sequencing. Heuristics in
the route assignment and the queuing can help
eliminate some of the unrealistic search efforts and

reduce the computational burden. In our study,
we tried two types of heuristics. First, heuristics
based on the FCFS scheduling behavior can elim-
inate a number of binary decision variables in the
original MILP formulation. Second, the branch
and bound search algorithm can be replaced by
GA-based heuristics.

Heuristics-Based Mixed Integer Linear
Programming

Based on the observations of the FCFS schedul-
ing strategy, assumptions are made on sequenc-
ing along certain route segments, such as merge
portions. The details of the following heuristics
were explained in our previous work on the metro-
plex operations and only brief summaries are listed
here:

• Precedence constraint heuristic. Sequences
along the common segments of the routes do
not change and follow the queuing from the
upstream of the merging segments.

• Windowing heuristics. A sequence change
is not allowed for a pair with their earliest
crossing times at the entry fixes separated
by more than a certain amount, i.e., win-
dowing value. Using windowing heuristics,
resulting schedules are planned locally and
subsequently corresponding to this value.

• FCFS heuristics. The ordering at all schedul-
ing points can be predetermined based on
unimpeded transit times to a specific schedul-
ing point, a runway or a entry fix. This
strategy is equivalent to the FCFS schedul-
ing ideas and the computational cost benefits
are maximum.

A scheduling performance almost equivalent to that
of the original MILP formulation was obtained at
only a fraction of the computation cost of the orig-
inal MILP formulation. However, the cost for the
branch and bound search is still expensive though
not as prohibitive as in the original MILP formu-
lation.

Heuristics of Genetic Algorithms

A GA is a stochastic search method widely
used in numerous optimization areas and has ad-



vantages in handling both discrete and continuous
design variables [10]. GAs are simple in mathe-
matical formulation but are typically expensive in
computation due to their stochastic search proce-
dure.

The idea of adopting GAs in the scheduling
problem for determining the binary decision vari-
ables in lieu of the branch and bound searches has
been suggested and used in surface management
work [7] and metroplex operations [8].

Once the binary variables of the route assign-
ment and the sequencing are determined through
GAs, computation of the STAs is carried out by an
LP solver. Since the LP is very efficient in compu-
tation and takes less than a couple of seconds to
schedule hundreds of flights, the idea of combin-
ing GAs with pure LP procedure is favored for the
dense terminal airspace simulations. Advantages
of the GA-based MILP planner include:

• It allows for the solution to be seeded with a
good initial guess, based on heuristics.

• All individual candidate solutions are, by def-
inition, feasible solutions - thus a usable so-
lution is available at all times.

• The solution tends to improve with compu-
tational time.

• It naturally handles windowing heuristics.

Individual Candidate Solution Representation

Each individual candidate solution, or “an in-
dividual” in short, consists of two vectors: an as-
signment vector and a sequence vector. The length
of each vector is equivalent to the number of flights
in the demand set. Each element of the assignment
vector represents a possible route assignment for a
flight in the demand set. Given the structure of
the route, a sequence of the scheduling points in
the route is prescribed, and the sequence vector is
defined at each scheduling point as a possible se-
quence of the flights passing through that point.
Route assignments and the queuing are random
based on the stochastic nature of the GAs. A con-
straint of no passing in the sequence vector along
the common route segment is enforced to further
reduce the computational cost.

Mutation

To maintain the diversity of the individual from
one generation to the next, mutations are carried
out at a specified probability in each generation
to both vectors of route assignment and sequence.
Due to the coupling between the assignment map
and sequence map held within each individual, the
mutation operators are applied sequentially. The
assignment mutation simply consists of randomly
replacing the route assigned for an individual with
another value from the feasible set of routes for
the flight. Then, the sequence map for each in-
dividual is updated based on the mutated route
assignment map. A sequence mutation is applied
to each scheduling point at a given route assign-
ment. Swapping sequence is determined via proba-
bility. If a random number sample is less than the
specified probability of mutating sequence, then
the number of swaps are chosen from a (0,Nmax),
where Nmax is the maximum number of swaps. A
random pair of flights that contain this scheduling
point in their assigned routes swap their ordering
relative to the current ordering.

Fitness and Selection

Fitness of each individual is defined as an ob-
jective function value and evaluated by solving the
pure LP problem implied by its route assignment
and sequence. The definition of the objectives
and the imposition of the constraints are equiv-
alent to those of the MILP formulation: earliest
transit time limit, lower and upper bounds of the
transit time via the specified speed controllability,
and separation requirements specific to the aircraft
type at the scheduling points.

Once each individual in the population has been
assigned a fitness, the selection of individuals to
form the basis of the next generation is performed
using a simple tournament selection scheme. A
tournament scheme finds the best-performing P/2
number of individuals, where P is the size of the
population, and those are selected as the basis of
the next generation. These P/2 number of indi-
viduals are then mutated to form the population
of size P to be evaluated. This cycle of fitness-
selection-mutation is repeated until a specified num-
ber of generations are completed.



Comparison of Computation Time and
Optimality

The optimality and the computation times are
compared for the schedulers that were described
in previous sections. The terminal route structure
tested for comparisons is a binary route topology
with double merges: 4 route options and 8 schedul-
ing points (4 entry fixes, 2 merge points and 1
runway). The route topology is shown in Figure 1
with the entry fixes of WP31 through WP34 and
the runway of WP0. The number of flights varies
from 6 to 100. Computation times with respect
to varying number of flights and the average de-
lays of 8 flights are compared in Table 1. The ex-
pensive computational costs of the original MILP
scheduler and the FCFS heuristics-based MILP
scheduler prohibited computations for more than 8
flights and 40 flights, respectively and their values
are represented as N/A in Table 1. Although the
FCFS heuristics allows scheduling up to 40 flights,
the computation time is not still satisfactory for
the dense terminal airspace simulation. However,
the speed-up of the computation time for the GA-
based MILP planner is considerable even with 100
flights. It is observed from the additional schedul-
ing of a larger number of flights using GA-based
MILP planner that it is able to handle hundreds of
flights in a few minutes. Therefore, it is concluded
that the GA-based MILP scheduler is faster than
the others and is more appropriate for the schedul-
ing problem in the dense terminal airspace opera-
tion.

Figure 1. Example route topology

Table 1. Computation times (in seconds) to sched-
ule different number of flights

Number Average

of 6 7 8 40 100 delay

fights (8 flights)

MILP 6.7 98.3 1258.4 N/A N/A 8.23

MILP +

FCFS 2.1 33.2 419.3 2040 N/A 8.38

heuristics

MILP +

GA ≤ 1.0 1.0 2.2 23.4 50.0 8.58

heuristics

Dynamic Planner Framework

The schedulers described in the previous sec-
tion are deterministic. The transit time of any
route segment was a function of aircraft type and
the speed profile only, and the uncertainties along
the routes were not considered in the planning.
Even if the uncertainties are taken into account
in the planner, the aforementioned schedulers are
based on the premise that the uncertainties of each
aircraft are known prior to the planning along any
route segments. However, the STAs in the real-
time simulation should be updated in a dynamic
manner corresponding to the varying situations of
weather, wind and off-nominal scenarios. A key to
the realistic scheduling is a dynamic update of the
STAs in a real-time trajectory model in consider-
ation of the uncertainties in flight simulation.

A dynamic planner framework is developed in
our study by interactively integrating the trajec-
tory simulation and the schedule planning for STA
update. The framework consists of two compo-
nents:

• Simulator: This module is responsible for ad-
vancing time. It manages the creation of
targets at specified location and time, and
constructs the demand snapshot at a given
instance of time. The module delegates to
a trajectory model that handles the actual
movement of flights along their most recent
plan and blends motion between successive
plans. Uncertainties in the transit time along
the route segment and their propagations are
implemented in the simulation module, which
will be explained in later section.

• Planner: This module is responsible for con-



structing conflict-free plans for each aircraft
in a given demand set. Each motion plan
consists of a sequence of waypoints with an
associated STA. Although any type of the
scheduler can be used in the dynamic plan-
ner framework, the GA-based MILP sched-
uler is integrated into the current framework.
Furthermore, to take into account the uncer-
tainties in the trajectory simulation, an extra
buffer additional to the desired separation is
added to mitigate effect of uncertainties so
that the resulting schedule remains conflict-
free. The details of the additional buffer are
discussed in later section.

A specified amount of controllability is allowed in
speed profile to maximize the scheduling perfor-
mance and is implemented in both the planner and
the trajectory model simulator.
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Figure 2. Example of dynamic planner framework

Trajectory Model Simulation

Flight simulation of the trajectory model is
made via subsequent communications with the plan-
ner. First, the dynamic planner starts from the
pre-planning of the initial demand set. Given the
speed profile and the ETA of each aircraft to the
first schedule point, the initial STAs are computed
by the scheduler at all scheduling points on the
assigned route. The STAs are predicted such that
they satisfy the constraints of the transit time bounds
on the route segments and the desired separation
at the scheduling points. The trajectory model
periodically computes the distance from the cur-
rent position to the next scheduling point. For our
work, the update period is 60 seconds. With dis-
tance to the next scheduling point and the STA
predicted by the planner, the target speed is cal-
culated and checked whether it is bounded by the
speed range specified in the original speed profile.
Once the target speed is determined, then the tra-
jectory simulator advances the flights by an update
period. After the simulation, the aircraft position
is recalculated and the earliest time to the schedul-
ing point is updated. A subsequent planning cy-
cle updates the STAs based on the most recent
simulation results . This cycle of simulation and
planning is iterated and advanced in time by the
update period until all the flights arrive at the run-
way. An example of the cycles of simulation and
planning is shown in Figure 2. Given a simple
route structure shown in Figure 2(a), the STAs at
the scheduling points of ”Waypoint1” and ”Run-
way1” are updated at each update period of 60
seconds. Their convergence history is plotted in
Figure 2(b), and STA updates are shown by the
triangles. Unlike the static planner, the STA val-
ues are updated at each update period and finally
coincide with the Actual Time of Arrival (ATA)
values at the scheduling points. The speeds along
the routes change correspondingly in each update
period.

Controllability

To delay or expedite an aircraft on its way to
the next scheduling point, the controllability on
any route segment is modeled such that it allows
±10 % speed variation. The corresponding transit
time bounds are computed. This controllability



is derived from the statistics of the aircraft flying
with modern avionics and the onboard precision
system [11].

Uncertainty Modeling and Propagation

Accurate prediction of uncertainties along an
entire aircraft’s trajectory is not trivial. It is a
complicated function of space and time, which re-
quires precise understanding of where and how much
of the uncertainties are present and how they af-
fect individual aircraft operations. However, the
uncertainties in the runway arrival times are quan-
tifiable from the statistics of the runway arrival
times observed in a given duration of time. We can
model the aircraft arrival time prediction errors at
the runway by a normal distribution with the time-
invariant mean and standard deviation values. On
the other hand, the uncertainty at the intermedi-
ate control points and route-merge points require
a mathematical model of the uncertainty propa-
gation mechanism along the routes. A simple lin-
earized form is introduced in our simulation mod-
ule: variance at each scheduling point is assumed
to be proportional to the variance of the runway
arrival time prediction errors when there are no
control effort in between the scheduling point and
runway. Uncertainty amount at any point on the
route is scaled by the ratio of the intermediate
route segment length to the entire route length
from the entry fix to the runway. This presumes
that the uncertainties grow longer along the longer
routes since the flight is associated with longer
transit time without control efforts.

Based on the central limit theorem, we assume
that the position error of aircraft at the schedul-
ing point is approximately normally distributed.
Then, the corresponding inter-arrival error of any
pair is also normally distributed, and the mean and
variance of inter-arrival errors are estimated by the
following basic relationships: if X and Y are inde-
pendent random variables that are normally dis-
tributed, then X + Y is also normally distributed,
i.e., if X ∼ N(µ, σ2) and Y ∼ N(ν, τ2) and X and
Y are independent, then aX+b ∼ N(aµ+b, a2σ2)
and X + Y ∼ N(µ + ν, σ2 + τ2). The means and
the variances of the X and Y are the µ and ν, and
σ and τ , respectively.

The validity of the above relations holds best
when the independence of two variables, X and Y ,

is relatively well guaranteed. The inter-arrival er-
ror of a pair of aircraft is a complicated function of
many factors such as precision errors in navigation
and weather including wind. We assume for sim-
plicity in our trajectory simulation that the wind
effect during the traffic simulation is rather con-
stant. Direction and magnitude of the wind are
relatively non-changing on each aircraft through-
out the whole simulation, then we can treat the
wind effect as a constant that is freely addable
/ subtractable to/from the standard deviation of
the position error of each aircraft at all schedul-
ing points, and the above relation holds relatively
well.

Additional Separation Buffer due to Un-
certainties

Aircraft arrival time errors and the correspond-
ing inter-arrival error in a pair are likely to cause
violations of the desired separation. In order to
ensure desired separation is maintained in spite of
arrival time error, extra buffers are added to the
original desired separation [12]. The amount of the
additional buffers is determined from the probabil-
ity of the inter-arrival errors and its normal distri-
bution shown in Figure 3. If we choose a value,

Figure 3. Probability distribution of position errors

Z, for an additional buffer such that the cumula-
tive probability corresponding to Z coincides with
a specified confidence level, 90% for the current
work, then we can say that the separation require-
ment in any pair will be satisfied under uncertainty
with 90% confidence and be violated with 10% tol-
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Figure 4. Uncertainties of position errors in a pair
at the merge point (σ1=σleader and σ2=σfollower.)

erance. A brief graphical explanation is shown in
Figure 3. This sets the additional buffer value as
1.645σ, where σ is the standard deviation of the
inter-arrival error distribution.

The above can be expressed mathematically as
follows. Standard deviations of the arrival time
errors of a leader and a follower in a given pair
are denoted as σleader and σfollower, respectively as
in Figure 4. The amounts are scaled from runway
standard deviation in proportion to the ratio of
the local route segment to the entire route from
runway. Assuming the probability of the position
errors of a leader and a follower are independent
of each other, the standard deviation of the inter-
arrival error is assumed to be

√
σleader + σfollower.

A corresponding additional buffer is set as 1.645√
σ2leader + σ2follower for a 90 % confidence interval

based on the normal distribution of the inter-arrival
errors. A simple mathematical formulation of total
amount of buffers is expressed in following Equa-
tion.

tsep tot = tsep desired + tsep σ

=
dsep desired

V
+ 1.645

√
σ2leader + σ2follower ,

where V is airspeed and tsep tot represents total
amount of separation requirement. Terms of
tsep desired, dsep desired and tsep σ represent a desired
separation in time, a desired separation in dis-
tance, and an uncertainty-related, additional buffer,
respectively.

Application: Optimal Route Struc-
ture Under Uncertainty

A practical application of the developed sched-
ulers and the dynamic planner framework is shown
in this section. A design of an optimal route struc-
ture under uncertainty in the extended terminal
airspace area is carried out to improve scheduling
performance and, thus, to best utilize the limited
airspace resources.

First, key parameters for a route structure de-
sign are identified. A total of five example route
structures are constructed with varying design pa-
rameters. A static FCFS heuristics-based MILP
planner is used to analyze the scheduling perfor-
mance of each notional route structure, but the re-
sults are validated by using the dynamic planner
framework. Based on the analyses of the schedul-
ing performance of the notional route structures,
more general cases of various merge topologies are
considered subsequently.

Parameterization

A route structure consists of such parameters
as the location and number of entry fixes, run-
ways and merge points as well as route segment
lengths. A demand set is also critical in schedul-
ing performance. The demand set defines rele-
vant flight information including the total num-
ber of flights, arrival time at entry to the route
structure, and traffic duration time. In fact, the
scheduling performance is very sensitive to the de-
mand set. A fully saturated demand set, i.e., one
which has no periods of low demands, is used to
isolate the scheduling performance from the effects
of the route structure alone. A fully saturated traf-
fic flow is consistent with dense terminal airspace
operation whereby demand exceeds capacity for
extended periods of time. In this way, the run-
way capacity is always exhausted and the number
of runways becomes no longer a parameter of the
airspace topology. An entry fix topology, i.e., the
total number of entry fixes and their locations, is
also assumed to be given to facilitate the fully sat-
urated traffic flow. Thus, the main parameter in
our design study is the merge point topology, i.e.,
the location and number of the merge points.



Numerical Test I

First, a numerical experiment is performed on
five route structures having different topologies with
varying numbers and locations of the merge points.
Figures 5 and 6 have a single merge point whereas
Figures 7 through 9 have two merge points. The
locations of the merge points are moved in order to
vary the ratios of route segment lengths in a given
topology and thus vary the uncertainty distribu-
tion along the route. These topologies can also
be defined by the parameters of the route segment
length and the merge angle between two routes.
For example, Figure 7 through 9 can be defined by
varying the parameters of a, b, c, α, and β as shown
in Figure 1, where a, b and c represent the route
segment length, and α and β represent angles be-
tween two merging routes.

A FCFS heuristics-based MILP is used for com-
puting the scheduling performance of each topol-
ogy. In the cost comparison of the schedulers ex-
plained in previous sections, a demand set of 80
flights is not trivial in scheduling even for the heuristics-
based MILP scheduler. Total computation time
grows very quickly, especially for a stochastic case
where hundreds or thousands of Monte Carlo sim-
ulations are performed. Thus, for this numerical
experiment, the route is pre-assigned for each air-
craft and the orders at the merge points are prede-
termined based on the the unimpeded transit times
from the entry fix to the runway. For a stochastic
scenario, an uncertainty model is directly imple-
mented in the scheduler, and we do not employ
a dynamic planner for this preliminary numerical
experiment. However, a more realistic validation
of these five airspace topologies is carried out by
the dynamic planner and analysis results will be
shown in the following section.

Initially, a total of 80 flights pass through the
entry fixes equally divided into four streams and
follow their pre-assigned routes during a short pe-
riod of 100 seconds. This short duration time
ensures fully saturated air traffic. Four types of
weight class categories are used: “heavy”, “B757”,
“large”, and “small”. A majority of aircraft in our
demand set, more than 90%, belong to the “large”
type, indicative of today’s operations.

The total amount of separation required at each
scheduling point is the sum of the minimum de-
sired separation and the extra additional buffer to

Table 2. Desired separation (nmi)

leader
PPPPPPPPP

follower
heavy B757 large small

heavy 4 5 5 5

B757 3 3 3 4

large 3 3 3 4

small 3 3 3 3

mitigate uncertainty. The quantification of this
amount is done using the formulation of Equa-
tion 4. The amount of the desired separation is
based on the weight classes of the leader and the
follower in a given pair, and the values are specified
in Table 2. Airspeed is assumed to be linearly de-
creasing along the routes in the extended terminal
airspace area and its value at each scheduling point
is summarized at the tables in Figure 5 through 9.
Airspeeds at the entry fixes are fixed at 250 kts.
Additionally, the desired separation of the entry
fix was 5 nmi to model the separation required for
en route airspace. Previously collected data in-
dicates that a standard deviation of uncertainty
(in the aircraft arrival time errors) at the entry
fix is found to be approximately 30 seconds. The
additional uncertanty-related separation buffer re-
quired at the entry fix in order to mitigate this
uncertainty is calculated in a similar way for the
merge points and runway.

Given the prescribed uncertainty and its corre-
sponding separation buffer, the FCFS heuristics-
based MILP scheduler simulates both the deter-
ministic and stochastic scenarios for all airspace
topologies shown in Figure 5 through 9. A to-
tal of 500 Monte Carlo simulations were carried
out for the stochastic simulations. The separa-
tion buffer and total separation are computed for
each case and summarized in the tables in Figure 5
through 9. The resulting average delays are shown
in Table 3. The average delay is calculated as a
difference between unimpeded transit time and ac-
tual transit time. The value of average delay is an
artifact of the fully saturated traffic scenario. The
key result is the performance improvement.

First, for the deterministic scenarios where no
consideration of uncertainty is made, the third col-
umn in Table 3 implies that the scheduling per-
formance is relatively independent of a particu-
lar airspace topology and its merge point loca-
tions. Although a slight improvement is shown in
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Table 3. Predicted average delays (seconds).

Average Performance Average Performance

Topology Cases delay improvement delay improvement

(Deterministic) (w.r.t Case 1) (Stochastic) (w.r.t Case 1)

single Case 1 3363.4 1.0 % 3834.8 1.0 %

merge Case 2 3370.8 -0.2 % 3918.2 -2.1 %

double Case 3 3348.1 0.45 % 3571.6 6.8 %

merge Case 4 3343.6 0.6 % 3564.8 7.0 %

Case 5 3352.0 0.3 % 3579.7 6.7 %

the double merge cases, differences in the average
delays among all cases are very minor, less than
1%. This can be explained from the formulation in
Equation 4, where the amount of total separation
is solely a function of airspeed alone when there
is no uncertainty. As airspeed gradually decreases
towards the runway, the runway always requires
the biggest separation of all the scheduling points.
This makes the scheduling performance largely in-
sensitive to the particular upstream route struc-
ture. The controllability of each aircraft does not
affect the scheduling performance either, as most
of the aircraft have to absorb delays propagated
from the preceding aircraft.

Second, for the stochastic scenarios, an im-
provement of 6.7 % is shown in Case 5, when com-
paring the single merge and the double merge topolo-
gies. Uncertainty creates perturbations in the tran-
sit times, and some of the aircraft can exploit their
controllability to fill the gaps in a pair created by
the uncertainty.

The results from both deterministic and stochas-
tic cases in Figure 5 and 6 are interesting and in-
formative. The actual, average spacings between
all pairs are extracted from the scheduling results
for both cases and shown in blue in tables in Fig-
ure 5 and 6. A careful comparison of five cases
of the resultant average spacings and the required
separation indicates that the average spacing at
each scheduling point is dominated by the largest
separation required along the route. This is shown
in red in tables in Figure 5 and 6. This observa-
tion suggests that in a fully saturated traffic flow,
the traffic becomes steady with acceleration and
deceleration adjusted by the controllability that is
allowed in each route segment and incurs approxi-
mately the same amount of spacings in any pairs.

Validation Using Dynamic Planner

The scheduling results in Section of Numeri-
cal Test I are validated using the dynamic plan-
ner framework. A GA-based MILP is employed
for the planner of the framework for a comparison
with the FCFS heuristics-based MILP. Unlike the
static planner used in Section of Numerical Test I,
a dynamic planner involves iterative interactions
between the planner and the simulator as time ad-
vances. An update period of 60 seconds was used
in our validation. In each dynamic planning cycle,
the simulator tries to track the STAs provided by
the planner at all scheduling points, and the plan-
ner creates new schedules as a result of updated
aircraft positions and ETAs from the simulator. A
realistic demand set is critical in the dynamic plan-
ner so that the trajectory model can be simulated
based on the operationally reasonable and realistic
schedule plans. For this reason, rather than using
fully saturated traffic as in the Numerical Test I,
initially well-separated traffic flows, by 5 nmi in
any pairs with random deviation ranging from -
20% to +20%, are used for the dynamic planner.
This results in hour-long traffic flows for the same
number of flights. Also the initial departing point
for all aircraft is fixed at about 100 nmi away from
the runway and is almost aligned with the freeze
horizon.

The validation results are summarized in Ta-
ble 4. An average delay value is, again, defined as a
difference between the unimpeded transit time and
the actual transit time from the entry fix to the
runway. Compared to the values in Table 3 which
used a fully saturated traffic flow, average delay
values become more reasonable with the maximum
value less than five minutes.



It should be noted that the dynamic planner is
more computation-intensive than the static schedul-
ing planner, as the specified plan update period
cannot be set too large in a real-time simulation. A
wall-clock CPU time per dynamic planning takes
about an hour with 60 seconds update period. The
dynamic planning requires hundreds of cycles of
simulation and planning for aircraft to travel the
entire route of 100 nmi in length. Thus, the com-
putation time of the dynamic planner for the stochas-
tic case becomes very expensive with Monte Carlo
simulation. The results for the stochastic cases
shown in Table 4 are obtained from only 100 Monte
Carlo simulations. More simulations are planned
as part of the future work.

It can be concluded from the average delay re-
sults shown in Table 4 that Case 5 is the best-
performing airspace topology and it has a perfor-
mance improvement, compared to Case 1, of ap-
proximately 50% in the deterministic case and ap-
proximately 30% in the stochastic scenario. Al-
though the sample size of the Monte Carlo simula-
tions in the stochastic scenarios is not big enough
to make the conclusion more trustworthy, the stan-
dard deviation of the 100 Monte Carlo samples
are as little as 15 seconds resulting in 5% toler-
ance that is far less than our percentile perfor-
mance improvement. It should also be noted that
for a less saturated traffic flow, an improvement
in the scheduling performance is more dramatic
compared to the 6.7% in Table 3. This can be ex-
plained by the fact that in fully saturated traffic
flow, all the aircraft quickly exhaust their control-
lability and are assigned their slowest speed profile.
That is not the case with less saturated air traffic,
and the benefits from the controllability are more
dramatic in this case. It should also be noted that
the same trend of the static planning in Numer-
ical Test I is shown in the validation results: an
airspace topology with small separation require-
ments at the scheduling points is more favorable
in the scheduling performance.

Numerical Test II

Based on the results in the previous sections
that the scheduling performance is heavily depen-
dent on the amount of maximum separation at the
scheduling points, a simple numerical experiment
is carried out to investigate more general variations

of the airspace topology. Relationships among the
component separation amounts at the scheduling
points are analyzed when the merge points move
around in the extended terminal airspace area. The
airspace topology is simplified to a circle with 40
nmi radius as shown in Figure 10. The points,
WP1 and WP2, represent the merge locations that
can move circumferentially at a relatively constant
radial distance away from the runway, and the
routes can be merged at these locations. Radial
distances, x and x + y, are also allowed to vary
within radius bounds: 0 < x < R and 0 < y <
R − x, where R is the radial distance from the
runway to the entry fix. The movement of the
merge points, WP1 and WP2, are shown in Fig-
ures 10(a) and 10(c), and the corresponding exam-
ple airspace topologies are plotted in Figures 10(b)
and 10(d), respectively. As WP1 and WP2 move
about in the extended terminal airspace area, the
entire route length in a particular airspace topol-
ogy from the entry fix to the runway and the corre-
sponding transit time may change. However, any
large variations were excluded in the transit times
by locating the entry fix such that the the entire
route from the runway to the entry fix does not
deviate much from the original radial lines.

For the airspace topology with a single merge
as in Figures 10(a) and 10(b), total separation
amounts at the runway and the WP1, are com-
puted from Equation 4 and plotted as solid lines
with symbols in Figure 11(a). The two dashed
lines represent the desired separation amount us-
ing the nominal speed profile, and the uncertainty-
related, extra separation buffers are plotted as dot-
ted lines. The traces of the maximum separation
with respect to the varying merge locations are
shown in Figure 11(b). Figure 11(b) implies that
there exists an optimal merge location somewhere
around 5 or 6 nmi away from the runway.

The case of double merges inside the extended
airspace area as in Figures 10(c) and 10(d) shows
similar trend as the single merge case. At the given
downstream merge point location, x, which can
move from the runway to the entry fix, the up-
stream merge location, y, also traverses between
downstream merge point and the entry fix. The
plot of the maximum separation buffer of all schedul-
ing points, i.e., runway, downstream and upstream
merge points, are almost identical to the plot of
Figure 11(b) and is omitted in the paper; how-



Table 4. Average delays (seconds) validated by dynamic planner framework for stochastic case.

Topology Cases Update Deterministic Performance Update Stochastic Performance

cycles scenario improvement cycles scenario improvement

(w.r.t. Case 1) (w.r.t. Case 1)

single Case 1 304 249.1 1.0 % 350 291.0 1.0 %

merge Case 2 257 235.0 5.6 % 329 283.0 2.7 %

double Case 3 228 107.26 56.9 % 294 228.2 21.6 %

merge Case 4 232 108.31 56.5 % 295 213.5 26.6 %

Case 5 247 109.17 56.0% 294 199.3 31.0 %

runway

fix

x

WP1

(a) Merge topology with sin-
gle mere point.

(b) Example airspace topol-
ogy with single merge point.

runway

fix

x

y
WP1

WP2

(c) Merge topology with
double merge points.

(d) Example airspace
topology with double merge
points.

Figure 10. Simplified airspace topology of the ex-
tended terminal area with varying merge point lo-
cations

ever, this indicates that the separation at the run-
way typically requires the biggest amount and in
other cases the downstream merge point requires
a larger buffer than the upstream merge point.

The exact optimal locations of merge points
are less meaningful in our analysis, as they can
vary depending on the underlying airspeed profile,
uncertainty quantification and propagation model,
and the assumed additional separation buffer due
to uncertainty. Possible changes to the optimal
merge locations can be inferred from Figure 11(a).

Desired separation represented as the dashed lines
in blue and red are rather non-changing as these
are solely determined by the airspeed topology alone,
and the assumption of monotonically decreasing
airspeed in the extended terminal airspace area is
reasonable. On the other hand, the modeling of
uncertainty and its propagation in the extended
terminal airspace area is still an area of active re-
search that requires extensive studies on how the
uncertainties are distributed or propagated along
the routes. How temporal or spatial deviation
from its predicted trajectory behavior is quanti-
fied over time and distance and translated into the
time-based scheduler is a difficult and yet very im-
portant topic in the scheduling and real-time sim-
ulations.

Various Uncertainty Propagation Mod-
els

A brief sensitivity study of the optimal merge
locations is carried out with respect to the different
models of uncertainty distribution and propaga-
tion. The results in previous sections assumed that
the increment of the uncertainty per unit route
segment is constant and the resultant uncertainty
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Figure 12. Constant distri-
bution of uncertainty
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Figure 13. Linear distribu-
tion of uncertainty
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Figure 14. Nonlinear (quar-
tic) distribution of uncer-
tainty
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Figure 11. A total amount of separation with re-
spect to varying merge locations.

is linearly proportional to the route segment length.
The plot of constant uncertainty increment and
the corresponding optimal merge location is plot-
ted in Figure 12. The maximum of the two solid
lines with the symbols represents the traces of the
largest separation amount of all the scheduling points.
The x-axis represents the location of the down-
stream merge point. Once the downstream merge
point is located at the predicted optimum point,
the separation amount at the upper merge point
appear to be smaller than the one at the down-
stream merge point.

On the other hand, if we put more weights in
the uncertainty towards the entry fixes, different
optimal merge locations are predicted. An as-
sumption of a linear increment as in Figure 13
moves the optimal merge location slightly towards
the entry fix, about 10 nmi away from the runway.
If we put more weights in the entry fix boundary
area as in Figure 14, at a quartic increase rate for
example, the optimal merge location falls in the re-
gions farther from the runway, about 23 nmi away.

From these simple models of the uncertainty
quantification and propagation, it is concluded that
the optimal location of the merge point is where a
large amount of uncertainties are present, and the
merge point plays a role in reducing the uncertain-
ties in that region by enforcing the pilot’s control
efforts to meet the suggested STA at that point.



Conclusions

MILP-based optimization algorithms were used
in our scheduling and route assignment problem,
and a number of heuristics were introduced into
the original formulation to keep its computational
cost realizable in the dense terminal airspace oper-
ations. FCFS-heuristics and GA-based heuristics
were adopted to reduce the computational burden,
and the resultant computational costs and schedul-
ing results were compared with the original MILP
solutions. The GA-based MILP planner appears
to be very efficient without loss of optimality. To
take into account uncertainty propagation in the
route structure, a dynamic planner framework is
developed. The dynamic planner consists of the
modules of the planner and the trajectory simula-
tor. The STAs are updated in a dynamic manner
via the interaction of the planner and the simulator
throughout the whole simulation. An uncertainty
model is implemented in the trajectory model of
the simulator and the extra separation buffers are
added at the scheduling points in the planner. As
a practical application of the proposed schedulers,
an investigation of the optimal route structure un-
der uncertainties in the extended terminal airspace
was carried out. A constant uncertainty incre-
ment was assumed along the route, ensuring the
uncertainty amount grows linearly in proportion
to the route segment length. After analyzing the
airspace topologies with varying merge topologies,
a route structure having the least maximum sepa-
ration at the scheduling points has shown the best
scheduling performance. These results were val-
idated with a dynamic planner framework with
a more reasonable demand set. Finally, airspace
topologies with various uncertainty distribution mod-
els were tested: a constant, linear and quartic unit-
increment of the uncertainty along the route seg-
ment. It is shown that the optimal merge point
should be positioned to bound the growth of the
uncertainty-related separation buffer such that the
maximum total separation at any point along the
route is minimized. This fact indicates that there
exists a likely optimal merge topology. The opti-
mal merge topology is still tuned for a range of
uncertainty propagation models while the exact
topology did vary.
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