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This research proposes and analyzes an approach for predicting controller workload by
predicting dynamic density. Most dynamic density formulations estimate workload with a
linear combination of a set of dynamic density factors that describe the tra�c situation in a
sector. The robust approach proposed here uses this linear structure and the available data
to explicitly consider the relative levels of uncertainty in dynamic density factor predictions
when predicting dynamic density. The bene�ts of the robust approach are analyzed by using
predicted and actual dynamic density factor data collected while playing back tra�c data
in the Future ATM Concepts Evaluation Tool. Results indicate that the robust approach
produces errors that are more than an order of magnitude smaller than those produced by
a simple approach that ignores factor prediction uncertainties. However, other approaches
achieve lower prediction errors than the proposed robust approach.

I. Introduction

The problem addressed in this research is the prediction of controller workload. Controller workload sets
the capacity of airspace sectors. Improved predictions of workload are useful when balancing sector capacity
and demand by altering air tra�c or by changing airspace. Altering air tra�c and changing airspace are
more e�cient if executed a few hours before a potential demand-capacity imbalance is realized, assuming that
the imbalance is accurately predicted. For example, actions like delaying the departure of 
ights may not
impact the workload in a sector for several hours and actions like changing sector boundaries are operationally
expensive and cannot be implemented arbitrarily often. Currently, operational workload predictions are not
trustworthy beyond about 45 minutes due to errors in the prediction of factors that impact 
ight trajectories,
such as departure times, tra�c 
ow management restrictions, air tra�c control actions, 
ight routes and
speeds, and weather.1 This poor predictability limits the e�ciency of actions that alleviate demand-capacity
imbalances.

There is a signi�cant body of research concerned with developing estimators and predictors of controller
workload. Some approaches involve non-linear estimators or predictors based on approaches like neural net-
works.2 Others are multi-dimensional workload estimates with factors selected based on enabling supervisor
decisions.3 Many of the proposed workload estimates are referred to as dynamic density, and they typically
generate an estimate from a linear combination of a set of dynamic density factors.4{8 Dynamic density
factors attempt to quantify workload-inducing characteristics of tra�c in a sector, such as aircraft density,
the number of ascending or descending aircraft, the variance of aircraft headings, or the number of aircraft
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near sector boundaries. Much of this dynamic density research considers predicting controller workload with
predictions of dynamic density.3,5{7 A variety of methods for predicting dynamic density up to 2 hours in
advance were investigated and compared in Ref. 5. These methods used predictions of each of the factors,
and a single dynamic density formulation was derived for all look-ahead times. In Ref. 7, predicted factors
were used to predict dynamic density. However, this work was only concerned with a prediction time hori-
zon of 20 minutes and only tried to improve dynamic density predictions by improving aircraft trajectory
predictions. In Ref. 3, factors were selected for predictions of dynamic density while considering their pre-
dictability, de�ned by the number of minutes for which the correlation between the prediction and realized
value exceeds a threshold.

In this work, a robust approach for predicting controller workload by predicting dynamic density is
proposed. This approach explicitly takes into account the varying degrees of accuracy in factor predictions
at various prediction time horizons. Di�erent coe�cients are used in the linear combination of factors
for di�erent look-ahead times, thereby accounting for variations in the relative predictability of factors at
di�erent prediction time horizons. This work does not propose a new set of factors and does not endorse any
particular set of factors and coe�cients. Rather, it proposes and analyzes a way to make any linear dynamic
density formulation robust to factor prediction uncertainties when the dynamic density formulation is used
to predict controller workload.

Some further discussion of previous research in workload estimation is provided in Section II. In Section
III, the robust approach for predicting dynamic density will be derived and discussed. The data collec-
tion method will be explained, assumptions will be investigated, and predictor performance results will be
presented in Section IV. Conclusions and future research �nish the paper in Section V.

II. Background

When workload is estimated with a linear combination of a set of factors, the coe�cients in the linear
combination must be estimated. This has been done in previous research using controller workload estimates,
exact measurements of factor values, and regression techniques.4,9 Air tra�c controllers are asked to control
an air tra�c situation in a simulator and estimate their workload during the simulation. Factor values are
computed from the exact measurements of aircraft states during the simulation. The samples of workload
estimates and instantaneous measurements of factor values are then used by statistical regression techniques
to estimate appropriate coe�cients for the factors in a linear workload estimator. These coe�cients are
appropriate for the instantaneous estimation of current workload from exact measurements of factors.

A simple approach for predicting dynamic density (DD) is to use these coe�cients in a linear combination
of predictions of factor values. However, this approach ignores factor prediction errors. Using factors that
are hard to predict accurately when predicting DD often leads to signi�cant errors. These errors may be
reduced by choosing the coe�cients in a way that considers the relative reliability of the factor predictions
at various prediction time horizons.

Choosing the coe�cients in this way does not imply that factors are more or less important for estimating
workload from exact factor measurements than has been demonstrated in previous research. It only implies
that due to their varying levels of predictability, factors vary in their usefulness for predicting workload.

III. Robust Prediction of Workload

III.A. Derivation of Robust Predictor

Let w denote the scalar-valued workload in a sector at a particular time. Furthermore, let f0 be a p � 1
vector of factors measured at that same time. Similarly, let ft be a p� 1 vector of predictions of the factors
that will occur in a given sector t time units in the future. The objective of the estimation problem is to
�nd a DD function, d0(f0), that estimates w given f0. The objective of the prediction problem is to �nd a
DD function, dt(ft), that predicts w given ft.

A separate linear model is assumed for each prediction look-ahead time t:

w = dt(ft) + "t = fTt �t + "t: (1)

Here �t is a p�1 vector of coe�cients that must be estimated from data. The "t term captures the fact that
pairs of ft and w are not actually governed by the linear relationship assumed by dt(ft). It is assumed to
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be a random error with expected value 0 (E "t = 0) and var "t = �2
t . Also, "0 is assumed to be independent

of the errors in ft.
A few assumptions will be made about the uncertainty in predictions of future factors. Assume that the

predictions of factors are unbiased. Mathematically, this means that E ft = f0, where f0 is the set of actual
factors that are realized t time units after the predictions ft are made. This may or may not be true, but its
truth will be checked and it could be prescribed as a prerequisite for factor predictions. Also, let �ft denote
the error covariance matrix for the predictions ft. As mentioned previously, assume that "0 is statistically
independent of the errors in the factor predictions ft.

The robust approach will create a linear predictor dt(�) for each lookahead time t by estimating the
coe�cients �t. The data used for this estimation are N corresponding sets of realized factor vectors
(f0;1; f0;2; : : : ; f0;N ), factor prediction vectors (ft;1; ft;2; : : : ; ft;N ), and measurements of workload (w1; w2; : : : ; wN ).
Let F0 be an N � p matrix in which the ith row is the ith set of factors fT0;i for i = 1; : : : ; N . Ft is the
corresponding matrix containing the factor predictions. Similarly, let v denote an N � 1 vector containing
the measurements of workload.

What is unique about the robust approach is that the uncertainty in v and Ft will be modeled explicitly.
This explicit treatment of uncertainty and the assumptions mentioned previously lead to a special case of
stochastic robust approximation in which it is possible to write a closed-form expression for the objective.10

Since E ft = f0, Ft can be modeled as Ft = F0 + Et, where Et is a random N � p prediction error matrix
with EEt = 0. Similarly, v can be modeled as v = F0�̂0 +e0, where e0 is a random N�1 vector of the errors
between the DD values produced by the estimator d0(f0) = fT0 �̂0 and the actual workload in the sector
(w) for each of the N measurements. The coe�cient estimates in �̂0 are used to estimate current workload
with exact measurements actual factor data. They have been estimated in the previous research described
in Section II and are considered given for this research.

The objective of traditional least squares regression is to minimize the residual sum of squares (RSS) in
the training data. With uncertainties modeled explicitly, the expectation of the RSS in the training data is
the natural choice for the objective:

�̂t = argmin
�t

E RSS(�t) = argmin
�t

E kv � Ft�tk22 = argmin
�t

E k(F0�̂0 + e0)� (F0 + Et)�tk22: (2)

In order to simplify this objective into a closed-form expression that can be minimized, it will be assumed
that the training data provides a good estimate of the factor prediction error covariance matrix:

�ft �
1
N

(Ft � F0)T (Ft � F0): (3)

Assuming that each of the N observations of (ft � f0) are independent and normally distributed, this is the
maximum likelihood estimator of �ft . An unbiased estimator of �ft for a generally distributed (ft � f0) is

1
N�1 (Ft � F0)T (Ft � F0), which will be nearly equal to 1

N (Ft � F0)T (Ft � F0) for large N . The insight that
the available data (F0 and Ft) enables the calculation of this estimate is what allows the robust approach to
explicitly consider the relative uncertainty of factor predictions. While approximating �ft

, a p � p matrix,
involves approximating � p2=2 terms because �ft

is symmetric, each term is an expected value that is
approximated by an average of N samples. Furthermore, N can be made arbitrarily large by running more
fast-time simulations, as described in sub-section IV.B. The quality of this estimate will be evaluated in
Section IV.D.1.

After using this estimate, the optimization problem that uses the data to �nd �̂t, the estimate of �t, is

�̂t = argmin
�t

(F0�̂0 � F0�t)T (F0�̂0 � F0�t) + �Tt (Ft � F0)T (Ft � F0)�t +N�2
0 : (4)

The derivation of the objective in this problem is in Appendix A.
This optimization problem can be solved by readily available convex optimization software (). However,

the optimal �̂t can also be computed by a closed-form expression (see Appendix A):

�̂t = (FT0 F0 + (Ft � F0)T (Ft � F0))�1FT0 F0�̂0: (5)
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III.B. Discussion of Robust Predictor

The objective of Problem (4) has three terms, and each quanti�es a particular type of error:

(F0�̂0 � F0�t)T (F0�̂0 � F0�t)| {z }
Bias Error

+�Tt (Ft � F0)T (Ft � F0)�t| {z }
Factor Prediction Error

+ N�2
0|{z}

Model Error

: (6)

Understanding these terms illustrates the tradeo�s that are made when the robust predictor solves Problem
(4) to �nd �̂t.

The �rst term captures the bias error. This term can easily be set to zero by setting �t = �̂0 (which
implies that d(�) = dt(�)). Doing so ignores uncertainties in the problem, but since E ft = f0, it also ensures
that E dt(ft) = E d0(ft) = d0(f0). By estimating �t as anything but �̂0, bias error is introduced into the
RSS because E dt(ft) 6= d0(f0). This bias error leads to the �rst term in Eq. (6). This term accounts for
the errors in predicting workload that occur when the coe�cients are changed from the values derived for
the instantaneous estimation of workload.

The second term quanti�es the factor prediction error. Factor predictions are not perfect (ft 6= f0), so
when a factor prediction is used to predict workload, the corresponding factor prediction errors will introduce
errors into the workload predictions. The magnitude of the factor prediction error term can be reduced by
reducing the magnitude of �t. In fact, this error term is zero when �t = 0. However, setting �t = 0 would
induce a large bias error. When selecting �t, the optimization process balances the bias error resulting from
choosing coe�cients that di�er from those derived for the instantaneous estimation of workload and the
prediction error resulting from factor prediction errors. The simple approach mentioned in Section II ignores
the factor prediction error and only minimizes the bias error.

The third term captures the model error. This term results from the error in the choice of linear
workload estimator. This part of the error cannot be reduced by the robust prediction method proposed
here. Mathematically this is clear because the variable �t is not part of this term and cannot be chosen in any
way to reduce the value of the model error term. In e�ect, previous research has already investigated ways
to reduce this error by choosing an appropriate estimator function d0(�) and by �nding the right estimates
of its coe�cients �0.

These three errors are illustrated with a simple one-dimensional example. Consider a dynamic density
formulation that has just one factor with the scalar coe�cient �̂0 = 1. Let the model error for this formulation
be such that �2

0 = 1. Suppose that there are only two sets of factor predictions and corresponding factor
values in the training data. Let the predicted factor values be Ft = [0 2]T and the actual factor values be
F0 = [1 1]T , which implies that �ft

� 1
N (Ft � F0)T (Ft � F0) = 1. In �gure 1 the three components of the

error, measured in expected RSS per sample, are plotted as a function of �t.
The model error is constant and cannot be impacted by modifying �t. The bias error increases as �t varies

away from �̂0 and could be minimized by selecting �t = �̂0. The factor prediction error grows as �t increases
in magnitude because of the di�culty in predicting the factor. The robust estimate of the coe�cient would
be �̂t = 1=2 because that value minimizes the total RSS per sample (and therefore also the expected total
RSS of the training data). The robust coe�cient leads to an expected RSS per sample of 3=2 while a simple
approach would select �̂t = �̂0 = 1, leading to a larger expected RSS per sample of 2.

IV. Analysis and Results

IV.A. Selection of Baseline Dynamic Density Formulation

The robust approach presented here is indi�erent to the particular set of factors under consideration. The
robust approach should improve the quality of workload predictions for any model that is formulated as a
linear combination of factor predictions.

While the approach proposed in this research applies to any such formulation, one particular formulation
had to be chosen for the analysis. This work makes use of a formulation that is similar to Simpli�ed Dynamic
Density (SDD),8 created using factor values that are computed in the Future ATM Concepts Evaluation Tool
(FACET).11 This formulation is chosen because it was developed for the purpose of dynamically designing
airspace, and thus it performs relatively well for a wide variety of sector types. The SDD-like formulation
used here includes ten factors. SDD coe�cients are non-negative in part because every SDD factor should
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Figure 1. Notional example of expected RSS per sample as a function of �t.

increase workload. Therefore, the approaches for estimating coe�cients evaluated here are constrained to
select only non-negative coe�cient values. The baseline factors and coe�cients are shown in table 1.

Table 1. Baseline Factor Descriptions and Coe�cients

Factor Description SDD-like �̂0 Estimate
AC Aircraft count 2:2

AD2 Number of aircraft divided by sector volume 4723
C2 Number of climbing aircraft 0:2
C4 Number of descending aircraft 0:2

NumHoriz Number of aircraft with 0:3
horizontal separation <8 nmi

S5 Number of aircraft with 3D Euclidean distance 1:2
between 0{5 nmi excluding violations

S10 Number of aircraft with 3D Euclidean distance 0:6
between 5{10 nmi excluding violations

WBPROX Number of aircraft within 10 miles 0:4
of a sector boundary

C14 Variance of aircraft speeds 0:0005
HDGVARI Variance of aircraft headings 0:0005

A histogram of the realized DD values considered for the analysis is shown in �gure 2. The SDD-like
formulation leads to DD values mostly between 0 and 70.

IV.B. Data Collection and Validation

FACET was used to generate the predicted factor data used in the study.11 Through custom modi�cations,
the FACET planning application generated predicted trajectories for aircraft based on historical or 
ight
plan information. These predictions use only information that was available at the time that the predictions
would have to be made in a real-time system. Predicted trajectories were generated for both airborne 
ights
and 
ights scheduled for departure.

5 of 14

American Institute of Aeronautics and Astronautics



0 20 40 60 80 100
0

100

200

300

400

500

600

700

DD Value

F
re

qu
en

cy

Figure 2. Histogram of actual DD values in the data set. The right-most bar counts any DD value larger than 100.

The predicted trajectory data was transferred to software that computes factors based on the predicted
trajectories. In addition, the actual track data was used to compute the realized factors that occurred in each
sector. These realized factor values were the truth data when computing the predictor coe�cient estimates.

Enhanced Tra�c Management System (ETMS) data is recorded from the live operation of the National
Airspace System and was used as the input for this work. ETMS data contains both actual track and

ight plan data for 
ights. The data was recorded from 1:00{2:30 pm Eastern Daylight Time on Thursday
09-06-2007. There were roughly 4,000 airborne aircraft during this period. For airborne 
ights, actual track
data and current 
ight plan routes were assembled into the TRX format. TRX �les contain track and 
ight
plan data at one minute intervals for each aircraft in 
ight. The TRX �le was used as input to FACET’s
sector planning application. For scheduled 
ights, the estimated times of departure (ETDs) and estimated
take-o� trajectories were integrated into auxiliary �les used by FACET. These estimated take-o� trajectories
included airspeeds and altitudes that were either historical or �led by airlines. The latitude and longitude
of the origin airports were used as the take-o� trajectory coordinates.

The FACET planning application was used to generate predictions for prediction time horizons of 15, 30,
and 60 minutes. Actual and predicted trajectory data for each airborne and scheduled aircraft were extracted
from FACET and written to respective 
ight data �les. The scheduled aircraft predicted trajectories were
used from the estimated time of departure until either the aircraft actually departed or the schedule timed
out. The following scenarios were re
ected in the resulting 
ight data:

� the 
ight departs before the ETD,

� the 
ight is delayed, then eventually departs, and

� the 
ight reaches schedule \time-out" and is considered cancelled.

Extensive veri�cation of both trajectories and factor predictions was conducted. For example, horizontal
(great circle) and vertical prediction errors were calculated based on the di�erence between the actual
and predicted trajectories to determine if reasonable uncertainties were being included in the trajectory
predictions. Furthermore, the 
ight trajectory �les were visually inspected and compared with original
track and schedule ETMS data to verify that the correct sequence of pre-departure and airborne (i.e., post-
departure) predictions were being made. This was particularly important when a 
ight was delayed since
additional pre-departure predictions (to be made in 5 minute increments) were required. Once the trajectory
prediction process was veri�ed, the factor prediction veri�cation process focused on understanding the cause
of large outlier factor prediction errors and addressing them as needed.

Some of the data was �ltered out before the statistical analysis was conducted. Only sectors with altitude

oors above 24,000 feet were considered. Also, sectors with relatively low tra�c volumes were not considered
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so that the workload predictions would not be biased by empty sectors. More speci�cally, any set of factor
predictions for which neither the predicted number of aircraft nor the realized number of aircraft was at
least �ve were removed from the data.

IV.C. Analysis Technique

The �rst step in the analysis is to verify some of the assumptions made in the motivation for and derivation
of the robust approach to predicting workload, as explained in Section III. For example, the robust approach
makes sense when some factors can be predicted more reliably than others. This non-uniform predictability of
factors is demonstrated from the data. Furthermore, the assumption that E ft = f0 is investigated. Finally,
the estimation of �ft

with 1
N (Ft�F0)T (Ft�F0) will be studied by comparing the value of 1

N (Ft�F0)T (Ft�F0)
in the training and test data.

To be precise, the ability of an approach to predict DD will be quanti�ed by the residual sum of squares
(RSS) in the test data. The data is iteratively divided into training and test sections, allowing for cross-
validation.12 The truth data for the error calculations is the DD as computed with the realized factor values
and �̂0 from table 1.

IV.D. Results

IV.D.1. Investigation of Assumptions

The data collection approach (see sub-section IV.B) captures uncertainty in the take-o� times of not-yet-
departed 
ights. This uncertainty is viewed as being important to the factor prediction errors and therefore
also the DD prediction errors. To verify that take-o� time uncertainty is important, horizontal prediction
error statistics were computed for airborne and pre-departure 
ights at a 30-minute prediction horizon. The
cumulative percentages of 
ight position predictions with less than or equal to various horizontal prediction
errors are shown in �gure 3. If a trajectory prediction has large horizontal prediction error, many DD factor
computations will also be erroneous.
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Figure 3. Cumulative percentages of 30-minute 
ight position predictions with less than or equal to various horizontal
prediction errors.

The horizontal prediction errors are considerably larger for pre-departure 
ights. For example, only
about half of all 30-minute position predictions of pre-departure 
ights have horizontal prediction errors less
than 50 nmi. However, more than 90% of all 30-minute predictions that consider only airborne 
ights have
horizontal prediction errors less than 50 nmi. When all 
ights involved in 30-minute factor predictions are
considered, the distribution of horizontal prediction errors is nearly the same as for airborne 
ights only.
This is because most 
ights involved in 30-minute factor predictions are airborne at the time the prediction
is made. Predictions of factors further in the future would be in
uenced more by the uncertainty in the
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predictions of the pre-departure 
ights. Take-o� time uncertainty is important and should be considered
when studying the predictability of sector workload.

The robust approach suggested in Section III makes sense when di�erent factors have di�ering levels of
prediction accuracy that also vary as a function of prediction time horizon. To investigate whether this is
true, the errors in the predictions of various factors are compared.

The results indicate that that factors do have varying levels of prediction accuracy and that these levels of
accuracy do vary depending on the prediction time horizon. To illustrate this, the accuracy of predictions of
sector aircraft count will be compared with the prediction accuracy of the number of aircraft with horizontal
separation under 8 nmi (\NumHoriz" from Ref. 9). Prediction accuracy will be quanti�ed by the prediction
root mean squared error (RMSE), normalized by the mean of the realized factor values. The results are
shown in the �gure 4.
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Figure 4. Normalized prediction root mean squared error for two factors.

The normalized RMSE is several times larger for the horizontal separation factor than for the aircraft
count factor. For most other factors in the baseline SDD-like formulation (see table 1), the normalized RMSE
varies between around 1 and 10. The speed variance factor normalized RMSE for a 60-minute prediction
time horizon is larger than 700, indicating that it is particularly di�cult to predict. Overall, the factors
exhibit di�erent levels of prediction accuracy.

The normalized RMSE for both factors in �gure 4 increases with prediction time horizon, as expected.
The magnitude of the increase varies from factor to factor. For example, the horizontal proximity factor
experiences a greater reduction in predictability with prediction time horizon than the aircraft count factor.

An assumption used to derive the robust controller is that the mean factor prediction error for each
factor is zero. Of the 10 factors used here to approximate SDD, the normalized prediction mean absolute
error is less than one for only about half of the factors at each prediction time horizon. This means that for
many factors, the bias in the factor prediction is larger than the average realized factor value. The robust
predictor performance is hindered by the incorrect assumption that factor prediction errors have mean zero.
With enough data, the bias in the prediction error for each factor could be estimated and used to correct
factor predictions so that they are mean zero.

Another assumption made by the robust predictor is that the error covariance of the factor predictions
can be approximated by the factor predictions and actual factor values in the training data. The accuracy
of this assumption depends on the number of samples and factors, how well the samples represent the space
of possible factor predictions and corresponding actual factor values, and whether or not the samples are
independent.

There are 3,076 samples of 15-minute factor predictions, 2,538 samples of 30-minute factor predictions,
and 1,210 samples of 60-minute factor predictions available to estimate the 10� 10 error covariance matrix
�ft

. These samples are from a single 90 minute period of time and they were repeatedly broken into training
and test data sets as part of the cross-validation process. Many are from the same sector at nearby times or
from neighboring sectors at the same time, so it is unlikely that they are all independent. More independent
samples would be needed to generate a better estimate of the error covariance matrix. The number of factors
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can be reduced by using factor-selection methods, which will improve the error covariance matrix estimate.
Accuracy of the error covariance matrix estimation is analyzed by comparing the variance of each factor

as estimated by each training data set to the variance estimated by each test data set. The estimate in Eq.
(3) is used. If the training set is a large set of independent samples and the performance of the predictor is
evaluated over a large set of independent test data samples, these two variance estimates would be nearly
identical. The variance in the test and training samples are not equal, and they diverge more for longer
prediction time horizons. When measured as a percentage of the variance of the factor prediction errors in
the entire data set, the average absolute di�erence between the training data set estimate of variance and
the test data set estimate of variance is typically between 10% and 20% for the 15-minute prediction time
horizon and between 20% and 50% for the 60-minute prediction time horizon. This degree of inequality in
the error covariance matrix estimates from the training and test data sets will also hinder the performance
of the proposed robust prediction approach. This issue could be overcome with a larger data set.

IV.D.2. A Simple Example

This example demonstrates some of the characteristics of the robust predictor. Consider a dynamic density
formulation that is based on only two factors:

d(f) = �1f1 + �2f2: (7)

For this example, f1 is the number of aircraft in the sector and f2 is the number of aircraft with horizontal
separation under 8 nmi (\NumHoriz" from Ref. 9). Both coe�cients are set to 1 for this DD.

The mean of the realized values of f1 is 7:0 and the mean for f2 is 2:2. However, it is more di�cult to
predict f2 than f1. The error covariance matrix for the prediction errors of these two factors at a 30-minute
prediction time horizon is estimated by Eq. (3) as

�f30 �

"
26:5 27:5
27:5 108

#
:

The variance for f1 prediction errors is four times smaller than the error variance for the predictions of f2,
indicating that f1 is considerably more predictable than f2. For the 30-minute prediction of this DD, the
weight on f2 should be relatively small because it is so di�cult to predict 30 minutes in advance. Similarly,
the more predictable f1 should be given a relatively large weight.

The robust approach adjusts the weights so as to minimize the expected value of the RSS error in the
DD predictions. It does so by taking advantage of the estimate of the factor prediction error covariance
matrix that can be constructed from training data. In this case, the robust approach sets the coe�cients as
indicated in table 2.

Table 2. Coe�cients for Simple Example

Factor Coe�cient for Instantaneous Estimation Coe�cient for 30-minute Prediction
(�0) (�̂30)

f1 1:00 0:901
f2 1:00 2:82� 10�8

As expected, the robust predictor computes a relatively large coe�cient for the prediction of f1 and
reduces the magnitude of the coe�cient for the prediction of f2. The robust predictor chooses the coe�cients
to balance the prediction error and the bias error. As it does so, the relatively large prediction error covariance
for f2 translates into a relatively large factor prediction error when the magnitude of the coe�cient on f2
is increased (see Eq. (6)). Therefore, the robust predictor chooses a small magnitude for the f2 coe�cient.
This does not indicate that f2 is unimportant when estimating workload from exact measurements of factor
values. Nor does it change the meaning of workload as estimated by the choice of d(f) in Eq. (7). Rather,
it indicates that f2 is so di�cult to predict that it is essentially useless for making predictions of workload.

The coe�cients found by the robust approach lead to much smaller errors when predicting this DD than
the coe�cients for the instantaneous estimation of workload. The mean absolute error in the test data is
11:0 when using the coe�cients for the instantaneous estimation of workload, but only 4:24 when using the
robust coe�cients.
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IV.D.3. Comparison of Approaches for Predicting Workload

In this section, the performance of the robust prediction method is compared with the performance of several
other methods to determine if it provides any bene�ts over the other methods. The baseline method is a
simple linear predictor in which the coe�cients used for the prediction of workload are those found for the
instantaneous estimation of workload (inspired by SDD and reproduced in Appendix B). Another approach
uses least squares regression to estimate the coe�cients, and produces di�erent coe�cient estimates for each
prediction horizon time. More precisely, it solves

�̂t = argmin
�t

RSS(�t) = argmin
�t

kF0�̂0 � Ft�tk22 (8)

to estimate �t for each prediction time horizon t. This approach can be motivated in several statistical
frameworks, but these frameworks do not explicitly consider uncertainties in the factor prediction data.10,12

It is referred to as \least squares." A similar approach used in Refs. 5 and 6 is to estimate coe�cients
using least squares regression but with the prediction time horizon as an additional factor. This approach
is referred to as \least squares time factor." For this approach, a single set of coe�cients is estimated and
used for all prediction time horizons. Finally, an approach that performs factor subset selection is also
implemented and evaluated. This approach is based on the robust approach and it reduces the number of
factors in the predictor by setting some coe�cients to zero. It uses a technique known as the lasso12 or ‘1
regularization.10 It is referred to as \robust lasso" and described in Appendix C.

The coe�cients for each approach are speci�ed as the solution of a convex optimization problem. These
problems were solved using the CVX package for specifying and solving convex programs in Matlab.13

The metric by which predictors are judged in this research is the RSS in the test data. RSS is directly
proportional to the RSS per test sample and monotonic in RMSE (a larger RMSE always corresponds to a
larger RSS and vice versa). Table 3 shows the RSS per test sample for these approaches for various prediction
time horizons. The mean absolute error (MAE) for each approach and each prediction time horizon is shown
in table 4.

Table 3. Residual Sum of Squares per Sample in Test Data

Prediction Time Horizon Simple Robust Least Squares Least Squares Robust
[minutes] Time Factor Lasso

15 17,810 7,143 6,017 5,996 7,142
30 126,800 3,001 2,941 2,913 3,010
60 10,210,000 4,909 4,914 4,687 4,924

Table 4. Mean Absolute Error in Test Data

Prediction Time Horizon Simple Robust Least Squares Least Squares Robust
[minutes] Time Factor Lasso

15 43:91 16.40 12.09 11.53 16.38
30 138:8 12.62 10.76 11.05 12.79
60 582:2 16.67 16.25 13.37 17.22

The most important conclusion from these results is that the simple approach performs very poorly. The
MAE of this approach ranges between 40 and 600 for DD values that generally range between 0 and 70.
Using the coe�cients derived for the instantaneous estimation of workload to also predict workload will not
work due to factor prediction errors.

Any of the other approaches perform signi�cantly better than the simple approach. At the 30- and 60-
minute prediction time horizons, they all provide more than an order of magnitude reduction in prediction
errors over the simple approach. The variation in performance among the other approaches is relatively
small when measured in terms of RSS per test sample. The di�erence between the largest and smallest RSS
per test sample is less than 20% of the smallest RSS per test sample at each prediction time horizon, and for
two of the prediction time horizons it is around 5%. Among the other approaches, the least squares or least
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squares time factor approaches perform best for each prediction time horizon and for both mean RSS and
MAE. The strong performance of the least squares time factor approach is interesting because it uses a single
set of coe�cients for all prediction time horizons. This implies that it is su�cient to derive coe�cients that
do not vary with prediction time horizon. The errors are larger for the robust approach and the robust lasso
approach, probably because the assumptions that were made during the derivation of the robust predictor
were shown in sub-section IV.D.1 to not hold in this data set. The robust lasso approach performs about as
well as the robust approach.

The error histograms for the simple and robust predictors are shown in �gure 5. Many of the predictions
from the simple predictor yield errors larger than 70, and there is a positive bias in the predictions. An
error of 70 when predicting a workload that is usually between 0 and 70 is likely unacceptable for most
applications. The error histogram for the robust predictor shows more estimates with small errors.
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(a) Simple predictor.
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(b) Robust predictor.

Figure 5. Error histograms for the 30-minute look-ahead predictors. The left-most and right-most bars represent any
errors less than �70 or greater than +70, respectively.

The coe�cients computed by some approaches for the 30-minute prediction horizon are shown in Ap-
pendix B. While the lasso approach leads to larger errors, it uses signi�cantly fewer factors to make its
predictions. Remarkably, when trained on the entire data set, the robust lasso approach uses only one
nonzero coe�cient instead of the ten used by all of the other approaches. This coe�cient corresponds to
the number of aircraft within a threshold distance of a sector boundary (\WBPROX" in Ref. 9). It is the
factor with the second smallest normalized prediction RMSE in the data, indicating that it is a relatively
predictable factor, which partially explains its inclusion in the robust lasso predictor.

V. Conclusions and Future Work

A robust approach for predicting controller workload with a linear combination of DD factors has been
presented. This approach leverages the available data and the structure of this problem to explicitly consider
the relative uncertainties in factor predictions. Results indicate that ignoring factor prediction errors by using
factor coe�cients derived for instantaneous workload estimation leads to very large workload prediction
errors. Any of the other investigated approaches lead to reductions in workload prediction errors of more
than an order of magnitude at the 30- and 60-minute prediction time horizons. The robust approach does
not perform as well as a least squares regression approach. The robust approach combined with a subset
selection method indicates that relatively good DD prediction quality can be achieved with as little as one
factor.

There is much future work to be done on the important topic of workload prediction. The robust approach
considered here could be analyzed with a larger data set and with other DD formulations. For applications
where workload is predicted for existing static sectors rather than for dynamically adapting sectors, sector-
speci�c coe�cients for workload prediction could be derived using this robust approach or another approach.
In this case the robust approach could possibly be extended to something like a Kalman �lter in which
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sector-speci�c factor prediction error covariance matrices are updated in real time. New factors that help
estimate workload and are also predictable could be proposed and analyzed. Finally, it would be useful to
determine the probability distribution of the future workload in a sector.

A. Detailed Derivation of Robust Predictor

This appendix contains the details of the derivation of the robust predictor. The expression to be
simpli�ed is the objective in Problem (2). When the terms are rearranged and the squared norm is written
out as a product of matrices, this objective becomes

E(F0�̂0 � F0�t � Et�t + e0)T (F0�̂0 � F0�t � Et�t + e0):

As this multiplication is carried out, the �rst two of these four terms will be kept together as a single
unit. This means that there will be three squared or nine terms after the multiplication is carried out and
before any like terms are grouped. These nine terms are

E[(F0�̂0 � F0�t)T (F0�̂0 � F0�t)� (F0�̂0 � F0�t)TEt�t + (F0�̂0 � F0�t)T e0

� �Tt ETt (F0�̂0 � F0�t) + �Tt E
T
t Et�t � �Tt ETt e0

+ eT0 (F0�̂0 � F0�t)� eT0 Et�t + eT0 e0]:

There are several like terms that can be grouped because (F0�̂0 � F0�t)TEt�t = �Tt E
T
t (F0�̂0 � F0�t),

(F0�̂0 � F0�t)T e0 = eT0 (F0�̂0 � F0�t), and �Tt E
T
t e0 = eT0 Et�t. Once these terms are grouped, the result is

E[(F0�̂0 � F0�t)T (F0�̂0 � F0�t)� 2(F0�̂0 � F0�t)TEt�t + 2(F0�̂0 � F0�t)T e0
+ �Tt E

T
t Et�t � 2�Tt E

T
t e0 + eT0 e0]: (9)

Note that because only Et and e0 are random, and because both have expected value of zero, the expected
value of the terms 2(F0�̂0 � F�t)TEt�t and 2(F0�̂0 � F0�t)T e0 are both zero. Also, the expected value of
2�Tt E

T
t e0 is zero because it was assumed that Et was independent of e0. Noting that the �rst term in Eq.

(9) is deterministic and that E eT0 e0 = N�2
0 , the objective simpli�es to

(F0�̂0 � F0�t)T (F0�̂0 � F0�t) + �Tt E[ETt Et]�t +N�2
0 : (10)

The �nal remaining expectation can be written as E[ETt Et] = N�ft
, but �ft

is not known. It is estimated
with Eq. (3) as described previously. After substituting this into Eq. (10), the objective is approximated by
the objective in Problem (4).

The closed-form expression in Eq. (5) for the robust estimator coe�cients �̂t will also be derived here.
The optimization problem that is solved to �nd these coe�cients is

�̂t = argmin
�t

(F0�̂0 � F0�t)T (F0�̂0 � F0�t) + �Tt (Ft � F0)T (Ft � F0)�t +N�2
0 :

The objective is quadratic in �t, so the minimizing �̂t can be found by di�erentiating with respect to �t,
setting the resulting linear expression equal to zero, and then solving for �̂t. Before di�erentiating, the
expression to be minimized can be rewritten as

�Tt (FT0 F0 + (Ft � F0)T (Ft � F0))�t � 2�Tt F
T
0 F0�̂0 + �̂T0 F

T
0 F0�̂0 +N�2

0 :

If this is di�erentiated with respect to the vector �t, the result is

2(FT0 F0 + (Ft � F0)T (Ft � F0))�t � 2FT0 F0�̂0:

By setting this expression to zero and solving for �t, the closed form expression for �̂t is found to be

�̂t = (FT0 F0 + (Ft � F0)T (Ft � F0))�1FT0 F0�̂0:
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B. Coe�cient Descriptions and Estimates

This appendix contains SDD-like estimates of coe�cients for coe�cients from Ref. 9, as well as estimates
for 30-minute prediction horizon coe�cients computed by some of the approaches discussed in this paper.
A description of each factor is in table 1. These descriptions are from Ref. 9. The coe�cients for various
prediction approaches are shown in table 5. The coe�cients shown here are computed by using all of the
available data as training data (which was never done while generating the results in the paper).

Table 5. Sample Coe�cient Estimates

Coe�cient SDD-like Robust Least Squares Robust Lasso
Name �̂0 Estimate �̂30 Estimate �̂30 Estimate �̂30 Estimate
AC 2:2 1.855 1.295 0

AD2 4723 0.05078 0.0 0
C2 0:2 3.943 2.673 0
C4 0:2 9.914 5.214 �10�7 0

NumHoriz 0:3 4.070 �10�8 5.772 �10�11 0
S5 1:2 6.530 �10�8 3.303 �10�10 0
S10 0:6 9.807 �10�8 9.974�10�11 0

WBPROX 0:4 0.2287 1.808 �10�8 3.887
C14 0:0005 9.557 �10�6 7.612 �10�7 0

HDGVARI 0:0005 0.02546 0.1004 0

C. Lasso Coe�cient Shrinkage

This section brie
y describes the coe�cient shrinkage method known as the lasso or ‘1 regularization.10,12

The main idea is to add a constraint to the minimization problem that is solved to �nd the coe�cients �̂t.
This constraint puts an upper bound on the sum of the absolute value of the coe�cients, which is the ‘1 norm
of the coe�cient vector. The factor values and �̂ coe�cients are normalized by the largest corresponding
factor value that occurs in the data set so that each coe�cient has roughly the same magnitude. The
optimization problem (4) then becomes

minimize (F0�̂0 � F0�t)T (F0�̂0 � F0�t) + �Tt (Ft � F0)T (Ft � F0)�t
subject to k�tk1 � s:

(11)

A non-negativity constraint on the coe�cients can also be added to this problem. This is done when solving
for the coe�cients for the prediction of the SDD-like formulation in this paper. This is a convex optimization
problem that is implemented using the CVX package for specifying and solving convex programs in Matlab.13

Here s is a parameter that can be tuned to control how small the sum of the absolute values of the coe�cients
should be. The e�ect of the ‘1 bound is to reduce the magnitude of the coe�cients and also to encourage
sparsity in the coe�cient vector, thereby selecting factors to be used by the predictor.

Optimization problem (11) is used in an algorithm that �nds a reasonable value for the parameter s,
selects which factors to include in the predictor, and solves for the �nal robust coe�cient estimates. The
selection of s is based on a procedure described in Ref. 12. An estimate of the largest meaningful s value is
determined by solving problem (4) with the training data and calculating the sum of the absolute values of
the coe�cients. This estimate of the largest meaningful bound s is denoted by �s. Several s values between
0 and �s are selected to be evaluated. Next, cross-validation is used within the training data to evaluate
the performance of each s value possibility. Problem (11) is solved for each s using a subset of the training
data. Then, the RSS of the subset of the training data being used for testing is computed with predictors
based on the resulting coe�cients. The average and standard deviation of the RSS over all test data sets
for each s are computed. Typically the average RSS decreases as s becomes larger. The selected s value is
the smallest s with an average RSS that is within one standard deviation of the s value that produces the
smallest average RSS.
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Once the s value is selected, the problem (11) is solved with all of the training data. The solution typically
contains several coe�cients that are set to zero. The �nal step is to solve problem (4) using only those factor
coe�cients that were not set to zero by the previous lasso problem. All other coe�cients are forced to be
zero, so only a subset of the original factors are used by the robust lasso predictor.
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