AIAA Guidance, Navigation, and Control Conference AlAA 2009-6010
10 - 13 August 2009, Chicago, lllinois

A Comparison of Optimization Approaches for
Nationwide Traffic Flow Management

Joseph Rios*
NASA Ames Research Center, Moffett Field, CA 94035

Jason Lohnf
Carnegie Mellon University, Silicon Valley Campus, Mountain View, CA 94035

Given thousands of flights in a capacity-limited airspace, finding optimal scheduling
strategies that minimize delay costs is a computationally difficult task. In this paper,
stochastic search techniques are applied to this fundamental Traffic Flow Management
problem. Genetic algorithms and simulated annealing rely on searching the solution space
in a manner much different than traditional optimization methods. These stochastic search
techniques are compared to an integer linear programming model previously described in
the literature. The runtime and aircraft schedules resulting from each model are analyzed.
Results indicate that the integer programming model finds the optimal schedule faster
than the next best technique, simulated annealing. In the presented experiments, solving
the same problem with different simulated annealing solvers in parallel, a quality solution
(within 5% of optimality) can be found in most cases. With roughly the same number of
computations, simulated annealing reached a better solution than the genetic algorithm in
6 out of the 9 scenarios tested.

I. Introduction

OMPUTATIONAL issues are an important factor in determining the feasibility of tools for solving large-
Cscale traffic low management problems in real-time. At any one time, there are thousands of flights
in the air above the continental United States and thousands more scheduled to depart within the coming
hours. Deciding which flights to delay and where to delay them in the presence of weather issues or excess
demand is a computationally difficult task. The problem becomes even more demanding when including
flight rerouting, connectivity, and equity.

When modeling the National Airspace System for Traffic Flow Management there are several parameters
that might be considered and design choices to make. One of the major choices is whether to aggregate
flights into flows!™ or consider each flight individually.*® Other issues include which resources (airports,
sectors, centers, etc.) to consider, what planning horizon to examine, what level of fidelity is required, and
whether to consider some form of equity in a solution.”® To perform a valid comparison of models and
techniques, a set of parameters must be agreed upon.

In this study, individual flights are considered with respect to sector and airport capacity restrictions at a
medium planning horizon (1-3 hours) with high fidelity (i.e., a solution in which the position of each flight
is determined minute-by-minute). The fundamental question within this framework is as follows: how long
should any flights be held in order to satisfy the capacity and scheduling restrictions of the system? Given
costs of delaying flights, this particular problem has been solved optimally using an integer programming
approach described by Bertsimas and Stock-Patterson.* In this paper, the performance of that model is
compared with two “stochastic search” approaches in terms of runtime and solution quality. A genetic
algorithm® approach solves the problem by creating “populations” of solutions which “evolve” over a series

*Aerospace Engineer, Automation Concepts Research Branch, Mail Stop 210-10, Joseph.L.Rios@nasa.gov. Member ATAA.
TResearch Faculty, MS 23-11, NASA Research Park, Jason.Lohn@sv.cmu.edu.

1of 11

This material is declared a work of the U.S. Government and é%&ﬁﬁf&;ﬂﬁ%gﬂwgﬁ é&fé%%mﬁ%@@ﬁité&%ﬁ%@}ti“

of iterations. Genetic Algorithms have been applied in the domain of Traffic Flow Management,'® 12 but
not in a way amenable to comparison with the integer programming approach since previous work solved
more specific Traffic Flow Management problems versus global optimality problems as Bertsimas and Stock
Patterson’s model does. The same problems were solved with a simulated annealing approach,'® wherein a
single solution is slightly perturbed over many iterations and each perturbed solution is kept or discarded
according to a “cooling schedule.” To the authors’ knowledge, simulated annealing has not been attempted
on large-scale Traffic Flow Management problems. All approaches are generally well-understood and provide
a varied set of benefits and liabilities. By comparing all of them in a unified manner, the applicability of each
method with respect to this particular Traffic Flow Management problem will be objectively compared.

This paper is organized as follows. In Section II details on all three approaches are provided. Next in Section
IIT a description of the data used in the experiments and how they were acquired is presented along with an
overview of the necessary tools. Following the presentation of the data, Section V describes the experiments
performed and their respective results. Finally, Section VI offers concluding remarks including potential
future research directions.

II. Models

The integer programming approach is presented here followed by a full description of the genetic algorithm
and simulated annealing approaches.

II.A. Binary Integer Programming Approach

This study uses the BSP model* to perform scheduling which minimizes delay costs. The model as presented
by Bertsimas and Stock-Patterson is given here:

Minimize: Z [ctgr + cfay]
!
Subject to: Z (w’;t - w’;,t—l) < Dy (t), V k € Airports,t € Time (1)
FiP(f,)=k
Z (w;?t — w’fit_l) < Ag(t), V k € Airports,t € Time (2)
f:P(f,last)=k
Z (w}t - w;/t) < S5;(t), V j € Sectors,t € Time (3)
JP(fi)=54,P(fi+1)=j’
w;,t-l—min(f,j)_w}t SO VfEF,j:P(f,’b),]/:P(f7Z+1) (4)
Why — W, >0 V f e F,j€ (f’s flight path) (5)

Decision variables w;-ct _ { 1, if ﬂight. f arrives at sector j by time t,
0, otherwise.

The air and ground delay (ay and gy, respectively) for each flight f are ultimately expressed in terms of the
binary variables, w, through a substitution for a; and g, which is omitted here. For each flight the model is
able to decide if the flight needs to be held anywhere (and for how long) in order to satisfy the airport and
sector capacity constraints presented in Constraints (1), (2), and (3). Within those constraints, Dy (t), Ax(t),
and Si(t) represent the departure, arrival, and sector capacities at a given time ¢ for a given resource k.
Airports are denoted by k and sectors by j. Fach of the capacities are a function of time, ¢. Each flight in
the set of flights, F, is described as an ordered list of distinct j’s from a set of sectors, J, with earliest and
latest feasible entry times for each of those sectors. Sectors in the flight path are denoted by P(f,y) where
f is the flight and y is the ordinal representing the sector or airport in the flight path. For ease of notation,
P(f,last) is used to represent the last sector in f’s path. The parameters c?c and ¢} are the costs of holding
flight f on the ground or in the air, respectively, for one unit of time.

2of 11

American Institute of Aeronautics and Astronautics

The problem is also constrained by the physical/temporal limitations of the flights. Specifically, each flight
spends at least the specified minimum amount of time in each of its sectors, min(f,j), as described by
Constraints (4). Finally, a set of constraints enforces the temporal logic of the decision variables (Con-
straints (5)).

II.B. Genetic Algorithm Approach

Genetic algorithms are a type of generate-and-test search technique that are guided by principles of Darwinian
evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are
better adapted to their environment, GAs expose their “genetic material,” frequently strings of 1s and 0Os
(chromosomes), to the forces of artificial evolution: selection pressure, reproduction, and genetic mutation
and recombination. GAs start with a pool of randomly-generated candidate solutions which are then tested
and scored with respect to their performance, often termed “fitness evaluation”. Solutions are then bred
by probabilistically selecting high quality parents and recombining their genetic representations to produce
offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool
of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is
reached. The details as they apply to this study are supplied below in Section I1.B.2, but the overall idea
will be to create lists of flights (candidate solutions) for scheduling on a first-come, first-served basis and
then manipulating those lists through GA operations to find the best ordering of flights.

I1I.B.1. Parallel Genetic Algorithms

Parallelized versions of genetic algorithms are popular primarily for three interconnected reasons. First, the
GA is an inherently parallel algorithm as the fitness evaluation of the individual solutions are completely
independent. Second, typical GA applications are computationally intensive. Finally, powerful computing
platforms, from multi-core workstations to computing clusters, are affordable and available. In addition, the
low communication bandwidth required allows the use of inexpensive networking hardware such as standard
office ethernet.

There are many styles used in implementing parallel GAs.!* For the work described in this paper, a master-
slave® architecture is used. Also called a “processor farm,” this style automatically balances the compu-
tational load among processors within each generation. The master processor maintains the population,
performs the genetic operations, and distributes the fitness evaluations to the nodes. Each node processor
runs a loop consisting of two main functions: ask for a set of individuals to process, and then process those
individuals as described below. A computing cluster consisting of 98 cpu cores was used to carry out the
experiments described below. A simple shell script is used to launch the parallel GA run on however many
processors the user desires to use.

1I.B.2. Genetic Algorithm Details

The genetic algorithm manipulates ordered lists of flights (represented as aircraft IDs (ACIDs)) which are
passed to a greedy scheduling algorithm (described below in Section I1.B.3) to produce feasible schedules.
An overview of this process is shown in figure (1). The GA reads in configuration files that setup the TFM
problem to be optimized and parameter settings for the GA and computing cluster. GA parameters include
population size, number of generations, crossover rate, and others. These parameters are tuned through
experimentation. Cluster parameters include the names of the nodes available to the run, and how many
cores per node are available to run on.

The greedy scheduler (GS) processes the GA-produced permutation and uses that ordering to contruct a
valid schedule (i.e., one which satisfies all capacity constraints). Once a valid schedule is generated, the
overall delay is calculated which is then passed back to the GA. The GS is the “fitness evaluation” for the
GA. The GA subsequently uses overall delay costs as the fitness score to select permutations to breed into
its next generation of permutations.

3of 11

American Institute of Aeronautics and Astronautics

T
N

Flights
file

Greedy
Scheduler

Genetic Algorithm

AT
N
ICapacit:
file

send into
GSone
by one

operators:
selection
reproduction
mutation
crossover

population of flight
permutations

T “"":""""""'J fitness
. value
(delay)

~ schedule permutation
- 8 [] =

fitness value
(delay)

Figure 1. Genetic algorithm and greedy scheduler overview. The main interaction between the GA and GS is seen as
loop where permutations generated by the GA are fed into the GS which sends delay values back to the GA. Input
files (left) are accessed by both processes.

The GA uses four main operators to build and maintain the population of ACID permutations. The selection
operator performs a biased selection of parents for breeding using a roulette wheel model. A roulette wheel
model statistically biases selection towards fitter individuals. This selection method preserves diversity by
occasionally selecting poor-performing individuals. Fitness scores are used to rank the individuals, the
ranking determines the selection probability.

The reproduction operator determines how individuals are reproduced and placed into the population. A
simple generational model is used whereby the entire population is replaced with each generation. There
are two special cases to how new generations are produced. The first is that the two elitist (i.e., highest
performance) individuals are copied into the new generation. The second case is that the two elitist indi-
viduals are always bred with each other and inserted into the new generation. Mutation is accomplished
by probabilistically swapping a randomly-chosen pair of ACIDs. The crossover operator used is Syswerda’s
position-based crossover.'® This operator works as follows:

1. Given two permutations, parent1l and parent2, randomly select a set of flight list positions as determined
by the crossover rate (typically 70%).

2. For the selected positions, childl receives the ACIDs of parent2, and child2 receives the ACIDs of
parentl.

3. For the unselected positions, the ACIDs missing from childl are filled in child1 based on the order they
appear in parentl. The same is done for child2 using parent2’s order.

Both the mutation and crossover operators retain the integrity of the permutation so that all individuals
are valid permutations. Note that this does not guarantee that it will generate a valid schedule by the GS —
indeed, in the early generations of the GA, it is common to see permutations that cannot be scheduled.

II.B.3. Greedy Scheduler

The greedy scheduler (GS) was based on an algorithm used in a previous computational study on TFM
scheduling.'® The GS is designed to satisfy three basic criteria: to be efficient, simple and realistic. It has
the same delay-cost-minimization goal as the BP model, but it does not take into account the relationship
between any of the flights. It schedules on a first-come, first-served basis by finding the first available
departure time for each flight in turn that will not violate sector capacities when combined with previously
scheduled flights. The GS requires an ordering of flights and capacity values for sectors and airports. The
GS then takes each flight, in order, and performs the following steps:

1. Calculate the necessary departure time for the target arrival time and set equal to ¢.

4 of 11

American Institute of Aeronautics and Astronautics

2. Check each time slice starting from ¢ in the flight path to verify that no capacity constraints are
violated.

3. If no violations, commit the flight’s departure time to ¢ and decrement all appropriate sector and
airport capacities during the time that the flight used the resource to designate accommodation of this
flight. Else there is a violation, increment ¢ by 1 and goto step 2.

This algorithm represents a naive, but fast, approach to scheduling. It roughly follows the same philosophy
of a “ration by schedule” ground delay program wherein flights are assigned arrival slots based on their
original schedule despite any other delays that might be imposed upon that flight.

II.C. Simulated Annealing Approach

The simulated annealing (SA) algorithm, like the genetic algorithm, is a generate-and-test search strategy.
The main difference is that SA operates on a single candidate solution instead of a set of candidate solutions.
In addition, there is no concept of recombining candidate solutions — SA relies solely on a mutation operator
(or “perturbation” in the SA literature) to find higher-performing solutions. In this study, the same mutation
operator (described in section I1.B) is used for both algorithms.

Simulated annealing starts with a single randomly generated permutation of flights. This permutation (the
parent) is mutated to produce a new permutation (a child) which, if it produces a better (more fit) schedule
than the parent, will replace the parent. Less fit children can replace the parent with probability p = e T
where AF' is how much less fit the child is. The temperature T starts at 100 and is multiplied by 0.92 every
1000 children. The same greedy scheduler described in Section I1.B.3 that was used by the GA is also used
by the simulated annealer to determine the fitness of a given permutation.

This is a basic SA implementation. There are some speed-up improvements presented in the literature!”: 8

that could be included in future studies. There are methods available for parallelizing SA. For this imple-
mentation, parallelization will be achieved by running several SA instances of the same problem on different
processors with different pseudo-random number seeds as will be described further in Section V.

III. Data

The Aircraft Situation Display to Industry'® data for Thursday, August 24th, 2005 starting 9:15 AM EDT
was used for all experiments. This was a benign day in the NAS in terms of weather, thus there were few
flow controls implemented. This yields a cleaner data set from which to start. The time chosen represents
the fairly dense mid-to-late morning traffic on the east coast, as well as the earlier morning rush on the
west coast. All domestic flights were kept, with the exception of some “noisy” flights. After removing the
international flights and the noisy flights, over 90% remained.

Any sector or airport that was used by any flight in the system was included in the data set. This resulted
in 974 sectors being included along with 905 airports. Many of the constraints generated by these resources
were not near their maximum capacity levels and could be simplified out of the problem formulation. For
example, if only a few flights are using Moffett Federal Airfield, then its capacities could never be violated
and, thus, could be removed from the formulation. There was no distinction made between low, high or
superhigh en route sectors.

To extract the flight data from the ASDI file, the Future ATM Concepts Evaluation Tool (FACET)?® was
used. FACET is capable of many functions, but for this study, its capabilities of playing back and simulating
historical data and recording statistics were most relevant. The default sector capacities (known as Monitor
Alert Parameters (MAP)) and airport capacities as understood by FACET were used for the experiments.
If ever an airport was without explicit capacities in FACET, a default value of 10 was used for arrival and
departure capacity per 15 minutes.

50f 11

American Institute of Aeronautics and Astronautics

IV. Tools

Due to the various algorithms being tested and the hardware and software that was available, there are
different setups for the integer programming approach and the stochastic search approaches.

IV.A. Integer Programming Tools

The CPLEX solver from IBM-ILOG was used to solve the integer programming model. This software was
run on an 8-core Xeon processor running at 2.66 GHz with 32 GB of RAM. IBM-ILOG does offer a parallel
version of CPLEX, but that tool was not used in this study and it is not clear how much improvement would
be gained from its use. For this study, the model was implemented in the CPLEX LP format. This allows
for more efficient runtimes?! than might be achieved with a modeling language like AMPL or GAMS, but is
generally more difficult to implement and maintain.

IV.B. Computing Cluster

For the stochastic search methods, the computing hardware used was a Beowulf Linux cluster consisting of
35 computing nodes: 14 having four AMD Opteron cores, and 21 having two AMD Athlon cores. Thus a
total of 98 CPU cores were available. The cores ranged from 1.8-2.1 GHz and were older technology, mainly
purchased four to six years ago. For a more modern comparison, a few runs for simulated annealing were
completed on a cloud-computing platform with Xeon processors.

V. Experiments and Results

The general framework for comparing the optimization approaches is illustrated in figure 2. Each “problem
solver” (e.g. the GA or integer program) is provided the same input files and they each provide the same
solution format allowing for clean comparisons. In the following subsections, results from the individual
solvers are provided. The final subsection completely describes the combined results.

For all experiments a realistic?? cost ratio of 2:1 for air to ground holding is used. Three planning horizons
are used: 60, 120, and 180 minutes. For each of those planning horizons, the capacity of the en route sectors
was varied from 100% of nominal MAP to 90% of nominal MAP and then to 80% of nominal MAP. This
method of reducing capacities is not meant to mimic actual disruptions to the NAS, rather it stresses the
solvers by forcing them to work on more constrained problem instances as they would need to do during an
actual disruption due to, say, weather.

For each scenario, a set of 13 GA runs were executed using the same parameters except with different
pseudo-random number generator seeds. The GA ran for 200 generations, with a population size of 1000
individuals, yielding 200, 000 greedy schedule evaluations. The crossover rate was 70% with no mutation. In
order to provide an equitable comparison between the GA and SA runs, the same number of runs and the
same number of greedy schedule evaluations,13 runs consisting 200, 000 schedule evaluations, were used. In
SA, each evaluation is also called an iteration. Like the GA, each of the 13 runs was identical except for the
seed for the pseudo-random number generator. While the GA uses multiple cores, the SA uses a single core.
For each scenario, the integer program approach was run only once as there is little variation in runtime and
no variation in solution quality. The number of runs was simply limited by time and computing availability.
The other parameters were determined through experimental tuning.

For the GA, experiments were setup in such a way as to sample across independent GA population runs.
Due to the stochastic nature of the GA, run sampling is required in order to collect meaningful performance
statistics. Due to computing time limits, only a relatively small number of runs were sampled. As an
example, an experiment might consist of 30 runs executing simultaneously using the same parameters, with
the exception of having different pseudo-random number streams. Statistical sampling also aids in tuning the
GA parameters, although in this study, tuning was held to a minimum due to computing time constraints.

6 of 11

American Institute of Aeronautics and Astronautics

Run times are given in wall clock time, as opposed to CPU time (the time a GA spends running on a
CPU).

Aircraft Delay
Data List/Costs
— .
Historical Data FACET
Capacity Runtime
Data Stats
(— L

Figure 2. General experimental flow.

V.A. Optimal Results

The BSP model was used to discover optimal solutions for each scenario. The solutions provided by this
solver provide a soft lower-bound on the solutions that any other solver is able to obtain. The reason this
is a soft lower-bound due to a “maximum lateness” parameter that is necessary in the BSP model. For this
study, the maximum lateness for each flight was set to 20 minutes. It is possible that lower delay costs can
be found if more delay is allowed per flight. The optimal results and associated runtimes are presented in

table 1.

Table 1. Results provided by the Bertsimas-Stock Patterson model.

Scenario Delay ~ Wall Clock
(Plan Horizon/ % Capacity) Costs Runtime (s)
60min/100 458 48
60min/90 682 85
60min/80 1127 148
120min /100 987 350
120min/90 1410 691
120min /80 2399 1130
180min/100 1270 923
180min/90 1943 2086
180min/80 3748 15322

V.B. Stochastic Search Results

Figure 3 shows individual run performance for a set of runs for two SA scenarios. As can be seen, the
runs converge fairly quickly, with most runs being within a few percent of their converged value by 100,000
iterations, as shown in table 2.

For the same number of fitness evaluations (as described at the beginning of Section V), the GA wasn’t
able to converge as convincingly. Figure 4 illustrates the same two scenarios as presented in figure 3. The
GA converges more slowly and doesn’t seem to complete convergence after its 200th iteration. This may
be evidence that mutation is the best operator that was tested as the SA uses this operator exclusively and
converged more quickly (in terms of fitness evaluations) than the GA.

V.C. Combined Results

The comparative results are now presented. The key measurement in this study is the delay cost found by
each method. Recall that the delay cost is a weighted sum of delay minutes where each minute of air holding
is equivalent to two minutes of ground holding. Figure 5 shows the comparative delay cost results. For the

7of 11

American Institute of Aeronautics and Astronautics

Table 2. Simulated annealing achieves near its best solution after half the allowed iterations. Increase over LP solution
provided for reference.

60min 60min 60min 120min 120min 120min 180min 180min 180min
100% 90% 80% 100% 90% 80% 100% 90% 80%

Result at iteration 100,000 459 699 1156 1019 1515 2744 1240 2188 4512
Increase over LP result 0.2% 2.5% 2.6% 3.2% 7.4% 14.4% -2.4% 12.6% 20.4%

Result at iteration 200,000 458 696 1151 994 1481 2659 1216 2072 4304
Increase over LP result 0.0% 2.0% 2.1% 0.7% 5.0% 10.8% -4.3% 6.6% 14.8%

Difference between iterations

02% 04% 04% 34% 22% 31% 1.9% 53% 4.6%
100,000 and 200,000

13000
5300 12000
4800 11000
00 4 10000

9000
3800

Delay costs
Delay costs

\ 8000
3300
\ 7000 1\
\
\
2300 Ny
\:%-\» 6000
2300 ——— = 5000
1800 w000
o e a0 oo SO0 0000 ToOD 40000 0000 160000 200000 o a0 4o G000 a0 100000 TN00 HOOD fGOOD 18000 200000
Iterations Iterations
(a) 180-minute, 90% capacity runs (b) 180-minute, 80% capacity runs

Figure 3. Examples of convergence for simulated annealing.

LP, this is the result from a single run of the CPLEX solver. For the SA and GA methods, the best solution
found over the course of all parallel runs is shown.

An important illustrative point is that the SA actually found a better solution for the 180 minute-100%
capacity scenario than the integer programming method. This has to do with the “maximum lateness”
parameter discussed in Section V.A. While the integer program is limited by how long it can delay a given
flight, the SA and the GA have no such restriction. The lateness limitation in the integer programming
model is a result of needing to limit the number of decision variables.

An important secondary measure is the relative runtimes to achieve each algorithm’s best solution. Figure 6
shows that the LP solver is still much faster than the stochastic search methods. There are many factors
influencing the difference in runtimes (hardware differences, parameter choices, fitness functions, etc), but it
is clear that, in general, the LP software is able to produce solutions much more quickly than the GA and SA
implementations presented in this paper. The one exception occurs in the 180min/80% capacity scenario.
The GA runtime is lower than the LP, though referring back to figure 5, the solution quality is better with
the LP. Also, recall that SA didn’t improve much after roughly 50% of its runtime was complete, offering
the potential to cut it runtimes in half for a small increase in delay costs (see table 2).

Despite being slower, the stochastic search methods exhibit an important quality. The runtime for the LP
varies greatly with the difficulty of the scenario being solved (especially on the 180 minute scenarios), whereas
the GA and SA were indifferent to the difficulty of the problem. This may be an important criterion for
certain applications where a solution (optimal or not) must be provided in a guaranteed timeframe, though
with the current implementation, that timeframe would likely have to be prohibitively long. The computation
time’s indifference to the difficulty of the scenario is related to the fact that each fitness evaluation takes
roughly the same amount of time regardless of how difficult the scenario might be.

8of 11

American Institute of Aeronautics and Astronautics

5300 13000

i
A\ 12000
4800 \"\\
\t\L 11000
4300 H: B -\
“\\ 10000 - —}
i}s ” 2:1_
0
2 3 2
» 3800 R 13 9000 =3
8 ‘\‘&; 8 ‘5_}\‘\
E e E 8000 S
© 3300 i T
a N =] N
_— e
Ree_ 7000 =——
2800 . = =
s =
= 6000 === —
2300 h—
5000
1800 4000
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Generations Generations
(a) 180-minute, 90% capacity runs (b) 180-minute, 80% capacity runs

Figure 4. Examples of convergence for the genetic algorithm.

6000

5000 —

|~ Linear program “ Simulated annealing * Genetic algorithm -

Best Delay Cost
N w N
o o o
o o o
o o o

-) r 3 r
s B R RRRD
$® §® S® $® S® S® $® S* S*

3) b $ &
& Q&\\Q Q@\Q & 0&\0 0@& & Q@\Q e“\\Q
ES S [o K &> RS K K
Scenario

Figure 5. Comparison of the best delay cost found by each method.

Recall that the computing platform for the linear programming method is more modern than that for the
stochastic search methods (see Section IV). To get a sense for the performance of the stochastic search
methods on more modern hardware, several runs of the 60min-100% capacity and 180min-80% capacity
scenarios were sent to a cloud computing service that offered Xeon processors comparable to that which
was used for the linear programming approach. The 60min-100% runs completed in parallel and took, on
average, 2781 seconds versus the 9881 seconds required on the experiment hardware while the 180min-80%
scenarios completed in 5877 seconds versus 20965 seconds on the experiment hardware. This is a 72%
reduction in runtime for both sets of scenarios. While this 72% reduction in runtime cannot necessarily
be extrapolated to all scenarios, it does illustrate that large improvements in runtime are possible for the
stochastic search methods by simply using better hardware. It is also worth noting that the reduction in
time for the 180min-80% scenario offers solutions 60% faster than the linear programming approach for the
same scenario. This implies that for difficult scenarios, the SA approach may be more operationally useful
than the linear programming approach.

VI. Concluding Remarks

This study presented three techniques applied to a challenging TFM problem. Integer programming provided
the best results in terms of both solution quality and runtime and is, thus, likely the tool of choice. However,
the stochastic search methods of simulated annealing and genetic algorithms exhibit several positive qualities.

9of 11

American Institute of Aeronautics and Astronautics

12000 18000

16000

10000
14000

8000 Linear program 12000 Linear program

“ Simulated annealing

10000

6000 “ Genetic algorithm “ Genetic algorithm

8000

4000

6000 —

Wallclock seconds
Wallclock seconds

4000

2000

2000

60min-100% 60min-90% 60min-80% 120min-100% 120min-90% 120min-80%
Scenario Scenario

25000

20000

Linear program

15000 = Si annealing

“ Genetic algorithm

10000 EEEE— F—— —

Wallclock seconds

5000

180min-100% 180min-90% 180min-80%
Scenario

Figure 6. Runtime comparisons for all tools over all scenarios. Different graphs used due to different vertical axes.

Namely, these approaches are indifferent in terms of runtime to the difficulty of any given scenario, whereas
the integer programming method is quite sensitive to the difficulty. This feature must be tempered with
the fact that the runtimes for the stochastic methods are quite long no matter the difficulty of the scenario.
Another positive feature of the the stochastic search methods is potential for parallelization as demonstrated
with the implementations presented here. Being able to take advantage of several computers and/or cores
to solve a single problem is an important aspect of scalability for a problem solving method.

Now that the stochastic search methods have been tested directly against a well-studied integer programming
approach, several new questions can now be posed regarding the utility of such methods. Specifically, future
TFM decision support tools will likely need to operate in an “online” manner wherein the tools are continually
solving, and the current best solution may be pulled from the tool at any time. It seems that stochastic
search methods would be more amenable to such a system than an integer programming approach. In
addition, once research on TFM problems drifts away from deterministic data, models can become more
cumbersome. There is hope that stochastic search methods will be better equipped to handle uncertainty
than traditional optimization approaches. Linear programming approaches, like the one used here, are by
definition limited to linear objective functions. The stochastic search methods can more easily accommodate
more complicated, non-linear objectives due to the way in which fitness is evaluated.

References

ISridhar, B., Soni, T., Sheth, K., and Chatterji, G., “An Aggregate Flow Model for Air Traffic Management,” ATAA Guidance,
Nawvigation, and Control Conference and Ezhibit, Providence, Rhode Island, August 2004.

2Menon, P., Sweridul, G., and Bilimoria, K., “New Approach for Modeling, Analysis, and Control of Air Traffic Flow,” Journal
of Guidance, Control, and Dynamics, Vol. 27, No. 5, 2004, pp. 737-744.

3Bayen, A. M., Raffard, R. L., and Tomlin, C. J., “Adjoint-based control of a new Eulerian network model of air traffic flow,”
IEEFE Transactions on Control Systems Technology, Vol. 14, No. 5, September 2006, pp. 804-818.

4Bertsimas, D. and Patterson, S. S., “The Air traffic Flow Management Problem with Enroute Capacities,” Operations
Research, Vol. 46, No. 3, May-June 1998, pp. 406—422.

5Bayen, A. M., Grieder, P., Meyer, G., and Tomlin, C. J., “Lagrangian Delay Predictive Model for Sector-Based Air Traffic
Flow,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 1015-1026.

SLulli, G. and Odoni, A. R., “The European Air Traffic Flow Management Problem,” Transportation Science, Vol. 41, No. 4,

10 of 11

American Institute of Aeronautics and Astronautics

November 2007, pp. 431-443.

"Ball, M. O. and Lulli, G., “Ground Delay Programs: Optimizing Over the Included Flight Set Based on Distance,” Air
Traffic Control Quarterly, Vol. 12, 2004, pp. 1-25.

8Vossen, T., Ball, M. O., and Hoffman, R., “A General Approach to Equity in Traffic Flow Management and its Application
to Mitigating Exemption Bias in Ground Delay Programs,” Air Traffic Control Quarterly, Vol. 11, 2003, pp. 277-292.

9Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Maching Learning, Addison-Wesley, Reading, Mass.,
1989.

10Qussedik, S. and Delahaye, D., “Reduction of Air Traffic Congestion by Genetic Algorithms,” Lecture Notes in Computer
Science, Vol. 1498, 1998, pp. 855-864.

11Soo0d, N., Mulgund, S., Wanke, C., and Greenbaum, D., “Multi-Objective Genetic Algorithm for Solving Airspace Congestion
Problems,” AIAA Guidance, Navigation, and Control Conference and Exhibit, ATAA, August 2007.

12Tandale, M. and Menon, P., “Genetic Algorithm Based Ground Delay Program Computations for Sector Density Control,”
AIAA Guidance, Navigation, and Control Conference and Exhibit, ATAA, August 2007.

I3Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, 1983,
pp. 671-680.

4 Cantu-Paz, E., “A Survey of Parallel Genetic Algorithms,” Calclateurs Paralleles, Vol. 10, No. 2, 1998.

15Syswerda, G. and Palmucci, J., “The Application of Genetic Algorithms to Resource Scheduling,” Proc. of the Fourth
International Conference on Genetic Algorithms, edited by R. Belew and L. Booker, San Diego, CA, 1991, pp. 502-508.

16Rios, J. and Ross, K., “Delay Optimization for Airspace Capacity Management with Runtime and Equity Considerations,”
AIAA Guidance, Navigation, and Control Conference and Ezxhibit, Hilton Head, South Carolina, August 2007.

17Szu, H., “Fast Simulated Annealing,” American Institute of Physics Conference, Vol. 151, August 1986, pp. 420-425.
8Ingber, L., “Very fast simulated re-annealing,” Mathematical and Computer Modelling, Vol. 12, 1989, pp. 967-973.

19 «Ajrcraft Situation Display To Industry: Functional Description and Interface Control Document,” Tech. Rep. ASDI-FD-001,
Volpe National Transportation Center, U.S. Department of Transportation, June 2005.

20Bilimoria, K., Sridhar, B., Chatterji, G., Sheth, K., and Grabbe, S., “FACET: Future ATM Concepts Evaluation Tool,”
ATM2000, Napoli, Italy, June 2000.

21Rjios, J. and Ross, K., “Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling,” AIAA Guidance,
Navigation, and Control Conference and Exhibit, Chicago, IL, August 2009.

22DeArmon, J., Hoffman, J., Holden, T., Mayo, J., Solomos, G., Kuzminski, P., and Chambliss, A., “An Estimation of the
Benefits of Air Traffic Flow Management,” AIAA Awiation Technology, Integration and Operations Conference, Anchorage,
Alaska, September 2008.

11 of 11

American Institute of Aeronautics and Astronautics

