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Sector capacity, number of aircraft permitted in a region of the airspace referred to as a 
sector, is used to limit air traffic to an amount that can be safely handled by a human 
controller. The traditional approach for predicting traffic demand in a sector involves the 
simulation of trajectories of individual aircraft. The demand provided by this approach is 
inaccurate for hourly time horizons. This paper explores the use of linear time varying 
aggregate models constructed using historical data for predicting sector demand. Since air 
traffic varies with the seasons, day of the week and weather, multiple aggregate models can 
be built to represent different situations. The paper evaluates the accuracy of using a single 
aggregate model and compares it with the improvements that can be achieved by using 
several aggregate models and selecting the best model based on hypothesis testing. The 
paper also presents the results of using a combination of probability-weighted predictions 
from several aggregate models. Evaluation of the prediction errors for all the high-altitude 
sectors in Indianapolis Center for a month shows that the multiple aggregation models result 
in smaller errors; errors vary with the sector and do not vary significantly with the 
prediction interval. 

I. Introduction 
HE demand for air transportation in the United States is expected to grow significantly over the next twenty 
years. New modeling and optimization techniques are needed for predicting and resolving demand-capacity 

imbalances in the airspace.  Sector capacity, the number of aircraft permitted in a region of the airspace referred to 
as a sector, is used to limit air traffic to an amount that can be safely handled by a human controller. The traditional 
approach for predicting sector demand consists of propagating the current location of the aircraft forward in time 
using an aircraft performance model, flight-plan information and Traffic Flow Management (TFM) restrictions. The 
predicted locations are then used to determine the number of aircraft in sectors at future time instants. Thus the 
traffic demand is based on the known TFM plans at the beginning of the prediction interval. The approach is 
illustrated in Fig. 1. This trajectory-based approach is used in the Federal Aviation Administration’s (FAA) 
Enhanced Traffic Management System (ETMS) 1, the Center TRACON Automation System (CTAS)2 and the Future 
ATM Concepts Evaluation Tool (FACET). 3 

The trajectory-based models predict the traffic demand adequately for short durations of up to 20 minutes. The 
accuracy of predictions decreases with the increasing prediction interval. A recent study 4 shows that the standard 
deviation of the sector count for a two-hour prediction varies from 3 to 5 aircraft. The sector demand is the output of 
a complex system subject to random errors and systematic feedback errors resulting from the difference between 
actual and proposed plans. There is a wide variation between the actual and proposed departure times of aircraft.5 
The flight plans of both the aircraft in the air and on the ground may be modified both by the air traffic service 
provider and the airlines in response to congestion and bad weather. Efforts have been made in the past few years to 
improve sector demand predictions. Gilbo4 proposed a smoothing approach to reduce the inherent errors in the 
traffic demand prediction in ETMS and validated the results by considering quiet days when the results are not 
impacted by TFM actions such as ground delay program, re-routing or miles-in-trail. 
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In recent studies6-8, the dynamics of air traffic flow is modeled by Linear Dynamic System Models (LDSM).  

The dynamics of air traffic in the U.S. National Airspace System (NAS) is modeled by using flow relationship 
between adjacent centers in Ref. 7.  Based on the historical observations, the LDSM in Ref. 7 is built by tracking the 
number of aircraft entering and leaving between each adjacent center, and the numbers of aircraft landing and taking 
off within a center over a defined time period. The time-invariant LDSM proposed in Ref. 7 is extended to a time-
varying one in Ref. 8 where multiple state transition matrices are used to cover the entire prediction period. The 
resulting model is then applied to predict aircraft counts in the 23 airspace regions which correspond to the 20 
centers in the continental United States, one each for Hawaii and Alaska, and one for the international airspace. 

The objective of this study is to extend application of the time-varying LDSM8 to develop strategic traffic flow 
models for NAS that can forecast demand in sectors in the presence of uncertainties such as weather conditions. 
Several earlier studies 9-10 show that days of the year can be classified based on the impact of weather, traffic 
demand and seasons.  Therefore, multiple LDSM(s) are built such that each model corresponds to a weather, traffic 
and season classification.  Then, hypothesis testing techniques are applied to select the reference model according to 
the characteristics of real-time traffic flow.  Since real-time air traffic varies over time, a decision rule derived from 
a dynamic programming approach11 can be used to determine the optimal time of switching between best matching 
models.  In this study, a combination of reference models is used instead of switching between best reference 
models.  Air traffic demand estimated from each reference model is weighted by its own likeliness of matching the 
real-time air traffic.  The predictions formed by combining these probability-weighted estimates is used for 
predicting air traffic during the next time period of about two hours. The method was tested by building 31 models 
representing August 2007 traffic in the sectors belonging to Indianapolis Center. The multiple models and a 
combination model were used to predict traffic counts and the errors between the model demand and actual demand 
for the month of September 2007. The analysis shows that the combined model has smaller errors; errors vary with 
the sector and do not vary significantly with the prediction interval. 

 
The paper is organized as follows: Section II provides the development of an aggregate sector model using 

traffic data. Section III describes the prediction of the sector counts using the aggregate model. Section IV provides 
the selection of the best aggregate model from several alternatives using hypothesis testing.  Section V describes the 
application of the method for predicting sector demand in Indianapolis Center. Conclusions and future work is 
described in Section VI. 

II. Sector Flow Model 
A sector flow model is developed in this section. The model can be used for predicting the sector demand, which 

is the number of aircraft in a given sector. The sector flow model follows the center flow model8 with some 
modifications. The sector flow model is expressed in the standard state space form12. The state transition matrix was 
identified by the aircraft locations provided by ETMS. The state transition matrix is used to generate the sector 
demand prediction model. 

 
  

Figure 1. Traditional approach for predicting sector demand. 
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For all the sectors in a given center, from one time step to the next, the inflow to the sector contains aircraft 

flying into the sector and departing from airports in the sector. The outflow from the sector contains the aircraft 
flying out of the sector and landing at airports in the sector. The sector flow behavior model can be described as in 
Fig. 2, where  for  is the number of aircraft in sector i  flying to sector  j at the next time step,  for 

 is the number of aircraft in sector  staying at the sector at the next time step,  is the number of aircraft in 
sector i flying out of the center or landing at the next time step, and  is the number of aircraft arriving from 
other centers to sector  at the next time step. 

Assume there are N sectors in a given center, the sector flow of the center at time k  is defined by the matrix 
 

  (1) 

  
The  row of represents the aircraft staying in, and all the outflow of sector  during the time interval from  
to . The traffic demand of sector i  at time k can be obtained by the sum of the row, formulated as  

  (2) 

The  column of  represents the aircraft staying in, and all the inflow to sector i  from time  to . The 
sector demand of sector i  at time  can be obtained by the sum of the column, formulated as 
 

  (3) 

 
From Eq. (2) and Eq. (3), the following equality holds 
 

  (4) 

 
  

Figure 2: Sector flow diagram. 
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The sector flow model can be written in the standard state space form. The state vector  is formed by the 

sector demands of all sectors in the center, . The state transition matrix  that maps  

to  with an input term  is defined as 
 

 

.

 (5) 

 
The off-diagonal  element of matrix  represents the portion of sector demand at sector j flying to 

sector i at the next time interval, while the diagonal  element of matrix  represents the portion of sector 
demand at sector i  staying at the sector at the next time interval. Note that if ,  is replaced 
by . From Eq. (3) and Eq. (5), it can be shown that 
 

  (6) 

 
 Therefore, the state space equation of the sector flow model is defined as the following 
 
  (7) 
 
The sector model developed in this section emphasizes the way data appears in ETMS and is similar to the center-
level model.8 

III. Sector Demand Prediction Model  
The sector demand prediction model in a given center uses the state transition matrix identified in the sector flow 

model, the observed sector demands, the estimated inflow and outflow from other centers, and the estimated arrival 
and departure in the center to perform the demand prediction. For a single step prediction, the model is described as 

 
  (8)  
 
where  is the predicted sector demand vector at time  with the observed sector demand vector , 
and  is the estimated system input including the estimated aircraft departing and flying in from other centers at 
time . 

For multiple steps prediction, the predicted sector demand vector is used as the observed sector demand vector in 
Eq. (8) at the next time step. Therefore, the p-steps ahead prediction model is described as 
 

  (9) 
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The model input  can be estimated either by the historical data or by monitoring the flight plans of the 
aircraft at surrounding centers and the scheduled aircraft departure times. 

IV. Multiple Reference Models and Hypothesis Testing 
The sector demand predictions in the previous section used a single reference model.  It is possible to build 

several models by using appropriate historical data that capture the differences due to daily, weekly, monthly and 
seasonal variations. Assume there are  reference models. A summary of the model selection process is depicted 
in Fig. 3. At a given time , the outputs from model  are compared with the actual sector demand to 
compute the error associated with each model. The best reference model combination at time  is revised to form 
the new model combination based on hypothesis testing. In addition, this section describes an approach for 
combining multiple reference models that are weighted by the conditional probabilities for improving sector demand 
prediction. 

 
The recursive formula that computes the posterior probability of each hypothesis given the history of sector 
demands is summarized below.  The recursive relation is modified from the formulation in Bertsekas13 and Ng11. 
The following notation is used to define: 

 

  

  
The posterior probability of each hypothesis can be obtained through Bayes' theorem, and it is generated recursively 
according to the following equations: 
 

 

 
Figure 3. Reference model selection using hypothesis testing. 
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  (10) 

and for the initial condition,  
 
  (11) 
 

 depends on the value placed on various models at the beginning of the testing process. If models are assumed 
to be equally likely 

  (12) 

 
If model  from the  reference models is preferred before testing begins, then the  values can be initialized as 

, for all . At time , the model which maximizes  is selected as 
the best model. 

The conditional probability density function  of the sector demand vectors can be determined 
by considering the sector demand prediction model which includes the aircraft departure model  and can be 
modeled as, 
 
  (13) 

 
The departure model includes a deterministic component  of the departures and a stochastic component 

 of the departures. The deterministic component  can be estimated from the historical mean departure 
rate in each sector within the center and count of aircraft flying in and out of the center. The stochastic component 

 is assumed to be discrete time white noise sequence . Note that the departures could 
also be modeled as Poisson random variables. However, it is computationally efficient to model the sector demands 
as Gaussian random process. The values of  can be selected to reflect the conditions associated with different 
reference models using historical data. A large value of  at time  may reflect the fact that model  at time 

 represents departures having large uncertainties. 
For all hypothesis , it can be seen that the predicted sector demand vector  at each time step has a 

Gaussian distribution, and the mean can be determined by the following equations, 
 

  (14) 

 
In general, the mean can be expressed by 

  

 
where the discrete transition matrix has the properties  and , and can 
be obtained directly as . 

The covariance of the sector demand prediction estimate at time step  under hypothesis , which is 

 can be propagated using the following equations,  
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  (15) 

 
Note that the mean  can be used as the predicted number of aircraft at time  when  model ( ) 
is selected. The rule for choosing the correct hypothesis  can be as simple as picking the hypothesis that 
maximizes . Difficulties arise when characteristic of real-time air traffic is similar to more than one 
hypothetical model and differences between the posterior probabilities are small.  

An alternative approach to switching between reference models is adapted in this study. The predicted sector 
demand at time  is estimated by combining the predictions from all aggregate models. The predicted number 
of aircraft is formulated as a linear combination of all predictions with each prediction scaled by its associated 
likeliness (posterior probability) to real-time air traffic. Let  be the aircraft count at time step  
predicted at time , the prediction can be formulated by the following equation: 
 

  (16) 

 
In this study, a collection of aggregate models are developed such that each LDSM characterizes one day of the 

month.  The following section presents the result of using the best aggregate model and a linear combination of 
LDSMs for sector demand prediction. 

V. Results 
This section presents results based on applying the aggregate flow models to predict sector demand for a number 

of sectors in Indianapolis Center (ZID), shown in Fig. 4. The major flows of ZID include the arrivals to Philadelphia 
International Airport (PHL), Ronald Reagan Washington National Airport (DCA), Chicago O'Hare International 
Airport (ORD), Detroit Metropolitan Wayne County Airport (DTW), and Cleveland-Hopkins International Airport 
(CLE), the departures from ORD and DTW, the westbound traffic of airway J80 from New York Center (ZNY) and 
Boston Center (ZBW), and the traffic to New York Terminal Radar Approach Control (N90). As shown in Fig. 4, 
ZID is divided into 10 super high, 4 medium high and 11 high altitude sectors.  Figure 5 shows the sector demand 
and the 15-minute peak sector demand at sector ZID93 on August 3, 2007. Note that in the paper, a day is defined as 
24 hours starting at four o'clock EDT since most of the aircraft departing on the previous day would have landed 
before the starting time. The blue dots in Fig. 5 represent the 15-minute peak sector demand during the day.  

A total of thirty one aggregate flow models of ZID Center are constructed by using the ETMS data from August 
1, 2007 to August 31, 2007, respectively. Each LDSM serves as a reference model which characterizes one day of 
air traffic flow in Indianapolis Center. The reference models are built from Eq. (8) and Eq. (9). The deterministic 
component  in Eq. (13) of each model input is set equal to the number of aircraft departing and landing and 
flying in and out of ZID on the corresponding reference day. The covariance matrix  of stochastic component 

 is set equal to a diagonal matrix. A diagonal element is set to one if the corresponding deterministic 
component is non zero. In addition, the uncertainty in the state transition matrix is modeled as discrete time white 
noise sequence with covariance matrix set equal to identity matrix. The stochastic component of the departure model 
is assumed to be independent of the uncertainty in the state transition matrix. 
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Next, consider the use of the aggregate flow models for demand prediction. There are 25 sectors in ZID and the 

aggregate flow models provide demand prediction for each of these sectors. The sampling rate of the model is 5 
minutes.  The mean and covariance of predicted sector demand vector conditioned on each hypothesis can be 
propagated by Eq. (14) and Eq. (15), respectively.  Figure 6 shows the error between the actual sector demand at 
ZID76 on September 1, 2007 and the 15-minute ahead predictions generated by models 1, 11, 13, and 25.  The 
results for other models are similar.  The variations in posterior probability using hypothetical models 1, 11, 13, and 
25 are shown in Fig. 7.  The posterior probability of other hypotheses is similar to hypothesis 1 and close to zero for 
the entire interval.  The posterior probability of each hypothesis is computed recursively using Eq. (10), Eq. (11), 
and Eq. (12). Figure 6 and 7 show that air traffic flow before 9 a.m. on September 1, 2007 is similar to those 
characterized by models 11, 13 and 25. The posterior probability of hypothesis 11 converges to a high value close to 
1 after 9 a.m. that day. 

 
  

Figure 4.  Superhigh (red), medium high (green) and high sectors (blue) in ZID center. 

 
  

Figure 5. Sector demand and peak sector demand at sector ZID93 on August 3, 2007 
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 The absolute error between the actual sector demand and the conditional mean provided by an aggregate model 
is compared every 5 minutes. The mean of this error for the entire day is calculated for the 25 sectors in ZID.  The 
average of mean absolute error for the Indianapolis Center is calculated for each aggregate flow model.  The average 
prediction error on September 1, 2007 generated by each of the 31 models is shown in Table 1.   In addition, the 
error of prediction that is generated by a linear combination of the mean expected value of the sector count for each 
of the 31 models multiplied by the posterior probability of the model using Eq. (16) is also shown.  The range of 
mean absolute errors for the 31 aggregate sector flow models is between 1.21 and 1.63 aircraft.  Obviously, 

 
Figure 6. Sector demand prediction errors on September 1, 2007 using models 1, 11, 13, and 25. 

 
Figure 7. Posterior probability of hypotheses 1, 11, 13, and 25. 
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identifying the correct aggregate model can significantly improve the accuracy of the predictions. Model 11 has the 
smallest mean absolute error among the 31 models.   The hypothesis testing algorithm correctly identifies model 11 
as the best model for that day since it maximizes the posterior probability.  Furthermore, the prediction that used a 
linear combination of probability-weighted sector count from each of the 31 models has a smaller error than model 
11.  Note that the real air traffic flow is similar to those characterized by models 13 and 25 in the morning.  The 
combined model enhances the accuracy of the predictions by adapting model 13 or model 25 in early morning.   
Figure 8 shows the posterior probability of hypothesis 11 and 25 between 7 and 10 o'clock in the morning.  The 
posterior probability of any one hypothesis is not equal to one which indicates that the predictions are combined 
from hypothetical models 11 and 25 between 8 and 9 o'clock that day.  The results show that using a combination of 
probability-weighted predictions from several aggregate models improves the prediction accuracy. 

 
 The models built from August, 2007 data are used to perform sector demand prediction for the month of 
September, 2007.  The predicted demand at each sector is calculated using Eq. (16).  The actual combination of 
models used varies with the day and time the demand is predicted.  Since the traffic flow management decisions are 
made by comparing the peak number of aircraft in a fifteen-minute interval with sector's Monitor Alert Parameter 
(MAP) value, the 15-minute peak sector demand, defined as the maximum number of aircraft every 15 minutes, is 
used to measure the accuracy of the sector demand predictions. The results of 15-minute prediction at ZID93 on 
September 1, 2007 are shown in Fig. 9a.  The Root-Mean-Square (RMS) error between the actual demand and the 
15-minute predicted demand is equal to 1.92. For the 2-hours prediction, the result is shown in Fig. 9b. The RMS 
error is equal to 2.00.  The average RMS error results of 15-minutes to 2 hours predictions at ZID76 and ZID80 for 
the month of September, 2007 are shown in Fig. 10. ZID80 has smaller average RMS errors than ZID76.  The sector 
demand prediction errors vary only slightly with the look ahead time. The prediction results for the super high, 
medium high and high altitude sectors in ZID are summarized in Table 2.  Over the month of September 2007, the 
RMS errors between the actual 15-minute peak sector demand and the predicted peak demand ranged between 1.79 
and 2.64 on average. 
 

Table 1. Average of mean absolute prediction error in Indianapolis Center on September 1, 2007 using a 
collection of models constructed from August 1, 2007 to August 31, 2007 data.  The unit is the number of 
aircraft. 

Model 1 2 3 4 5 6 7 8 
Average Mean Absolute Error 1.43 1.63 1.41 1.25 1.37 1.41 1.45 1.46 

Model 9 10 11 12 13 14 15 16 
Average Mean Absolute Error 1.48 1.41 1.21 1.33 1.41 1.43 1.44 1.51 

Model 17 18 19 20 21 22 23 24 
Average Mean Absolute Error 1.43 1.22 1.34 1.47 1.42 1.46 1.46 1.44 

Model 25 26 27 28 29 30 31 Combine 
Average Mean Absolute Error 1.22 1.30 1.38 1.37 1.40 1.45 1.41 1.20 

 

 
Figure 8. Posterior probability of hypothesis 11 and 25 between 7AM and 10AM EDT. 
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(a) 15-minute prediction                                                          (b)2-hour prediction 

Figure 9.  Peak sector demand and predicted peak demand on September 1, 2007 

 
Figure 10. Variation of prediction errors in two sectors in Indianapolis Center. 

Table 2. Average prediction RMS error in Indianapolis Center over September, 2007 using a collection of 
probability-weighted models constructed by August, 2007 data.  The unit is the number of aircraft. 

 
Name MAP Average prediction RMS error Name MAP Average prediction RMS error 
ZID66 14 2.06 ± 0.02 ZID75 18 2.06 ± 0.02 
ZID76 18 2.47 ± 0.01 ZID77 18 2.19 ± 0.03 
ZID78 16 2.15 ± 0.05 ZID79 18 2.41 ± 0.04 
ZID80 13 1.79 ± 0.02 ZID81 17 2.34 ± 0.03 
ZID82 16 1.98 ± 0.02 ZID83 16 2.03 ± 0.01 
ZID84 16 2.22 ± 0.02 ZID85 17 2.16 ± 0.05 
ZID86 18 2.40 ± 0.04 ZID87 15 2.29 ± 0.04 
ZID88 14 2.01 ± 0.02 ZID89 14 2.08 ± 0.06 
ZID91 19 2.61 ± 0.04 ZID92 17 2.15 ± 0.05 
ZID93 19 2.59 ± 0.09 ZID94 17 2.43 ± 0.01 
ZID95 21 2.32 ± 0.03 ZID96 18 2.48 ± 0.03 
ZID97 18 2.64 ± 0.02 ZID98 18 2.25 ± 0.04 
ZID99 18 2.47 ± 0.07    
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VI. Concluding Remarks 
An air traffic sector demand forecasting model using an aggregate sector flow model was presented. The model 

is capable of both short-term (15 minutes) and mid-term (30 to 120 minutes) sector demand prediction with an 
average root-mean-squared error between 1.79 and 2.64 aircraft. Unlike trajectory-based models, the accuracy of 
these models do not vary with the prediction interval and the models are less susceptible to disturbances in the 
system. The state transition matrix in the model captures the air traffic flow property; therefore there is no need to 
store the individual aircraft trajectories in the system. Furthermore, a collection of aggregation models is constructed 
such that each may represent the traffic flow under different conditions. It is demonstrated that the best model for 
the actual traffic flow characteristic, is correctly identified based on hypothesis testing. 

The usefulness of the demand prediction models depends on how they are used by the operations or the planning 
staff to make TFM decisions. The enhanced predictions from ETMS4 and the aggregate models proposed in this 
paper provide two different demand forecasts to the decision-makers. The ETMS demand predictions can be 
characterized as predictions based on the known TFM plans at the beginning of the prediction interval whereas the 
aggregate sector flow models provide demand predictions with built-in historical TFM responses.  The demand 
predicted by the aggregate sector flow model dynamics can be modified by retaining the state transition matrix 
based upon historical data and modifying the aircraft departure data based on the known TFM plans as is done in 
current ETMS demand predictions. 
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