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The optimization of traffic flows in congested airspace with varying convective weather
is a challenging problem. One approach is to generate shortest routes between origins and
destinations while meeting airspace capacity constraint in the presence of uncertainties,
such as weather and airspace demand. This study focuses on development of an opti-
mal flight path search algorithm that optimizes national airspace system throughput and
efficiency in the presence of uncertainties. The algorithm is based on dynamic program-
ming and utilizes the predicted probability that an aircraft will deviate around convective
weather. It is shown that the running time of the algorithm increases linearly with the
total number of links between all stages. The optimal routes minimize a combination of
fuel cost and expected cost of route deviation due to convective weather. They are consid-
ered as alternatives to the set of coded departure routes which are predefined by FAA to
reroute pre-departure flights around weather or air traffic constraints. A formula, which
calculates predicted probability of deviation from a given flight path, is also derived. The
predicted probability of deviation is calculated for all path candidates. Routes with the
best probability are selected as optimal. The predicted probability of deviation serves as
a computable measure of reliability in pre-departure rerouting. The algorithm can also
be extended to automatically adjust its design parameters to satisfy the desired level of
reliability.

I. Introduction

An advanced air traffic management system is needed to optimize the throughput and efficiency of the
national airspace system under different sources of uncertainty such as weather and airspace demand. One
approach to increase the efficiency of the airspace is to generate the shortest route between airports or
any origin and destination, while meeting the airspace capacity constraint in the presence of uncertainties.
Grabbe1 and Mukherjee2 developed a sequential optimization method that integrates departure controls,
pre-departure and en route reroutes, and airborne holding controls. A key component of this integrated
traffic flow management system is the optimal routing algorithm that generates optimal flight paths based
on the available weather forecasts and predicted airspace demand.

Many shortest path algorithms that utilize forecasted weather information have been developed in recent
years (Sridhar,3 Prete,4 Krozel5). Sridhar3 develops a rerouting algorithm that reroutes aircraft locally
around sectors whose capacities are exceeded. The rerouting algorithm is designed to minimize the number
of piece-wise linear route segments needed to circumvent these sectors. Prete4 reduces the optimal routing
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problem to that of searching a graph for a shortest-path using the A! algorithm. Krozel5 investigates a
method of dynamically generating alternative paths that reroute pre-departure flights around regions of
convective weather based on the latest weather forecast. Both Prete4 and Krozel5 calculate optimal routes
that avoid hazardous weather with a severe level suggested by the FAA Aeronautical Information manual.
In order to better estimate weather impact on airspace capacity, a recent study in DeLaura6 presents initial
results of research to develop a quantitative model that would predict when a pilot will deviate around
convective weather in en route airspace. By applying the quantitative convective weather avoidance model,
Windhorst7 and Love8 develop an automated system for rerouting aircraft during the en-route segment of
air traffic.

In this study, an optimal flight path search algorithm is developed to support the integrated traffic
flow management system currently under development at NASA Ames. The algorithm is based on dynamic
programming and utilizes the convective weather avoidance model. The calculated optimal flight path is also
considered as an alternative to the coded departure routes which are used by FAA to reroute pre-departure
flights between airports around weather or traffic constraints. In addition to generating the optimal route,
this study develops a formula that calculates the predicted probability of deviation from a given flight path.
The calculated deviation probability is considered as a measure of reliability of the optimal route, which
is seldom found in the optimal flight path searching literature. The predicted probability of deviation is
calculated for all path candidates, which include the alternative route and the set of coded departure routes,
for the purpose of optimal route selection. Routes with the best probability are selected as optimal.

Section II presents a summary of the dynamic programming approach to the optimal flight path. Sec-
tion III presents formulas for calculating predicted deviation probability and the expected cost of deviation
using convective weather avoidance model. Section IV discusses setup of the experiments which are conducted
to evaluate performance of the dynamic programming routing algorithm. Section V shows the simulation
results and discusses performance of the dynamic programming routing algorithm. Finally, conclusion is
given in Section VI.

II. Optimal Flight Path via Dynamic Programming Method

Many shortest path algorithms that avoid fixed or moving obstacles have been developed during the past
few decades. Popular approaches to the path-finding problem include graph searching algorithms such as the
Dijkstras algorithm (Dijkstra9), the A! algorithm (Hart10), and the D! algorithm (Stentz11). The Dijkstras
algorithm, which finds the shortest path from a starting point to an ending point in the graph, is closely
related to Dynamic Programming (DP). The A! algorithm is similar to the Dijkstras algorithm but uses a
heuristic estimate to guide itself and accelerates the searching process. An enhancement of A! is the D!
algorithm, which can be used to find the shortest path in a dynamic environment.

The DP method is chosen for this study. It makes use of the principle of optimality (Bellman,12 Bert-
sekas13), and it provides a provably global optimal solution when a feasible solution exists. DP also provides
a convenient modeling environment for both problem formulation and algorithm development that many
other approaches sometimes lack. The objective cost function in the DP analysis can be constructed by
adding different components to represent obstacles or constraints. Each individual component can be added
to or removed from the objective function depending on the application and available information. Then,
the global optimal solution can be obtained by minimizing the objective function. The computation time
of the DP method is very high since the optimal solution at each grid point has to be computed to provide
a globally optimal solution. A new scheme for constructing the grids and grouping them into stages in the
search space is proposed to reduce the computation time. It is shown that the optimal path can be obtained
in O(e) computation, where e denotes the total number of links (edges). In Section II.A, formulation of the
dynamic programming is outlined. The grids for the search space are defined in Section II.B

II.A. Dynamic Programming Formulation

This study uses the DP method to search for the optimal flight path between two locations. The dynamic
equation for an aircraft between the initial position with time x0(t0) and the final position with time xf (tf )
can be specified by the following equation,

xi′,j+1(ti′,j+1) = xi,j(ti,j) + ui,j(ti,j), (1)
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where i, j and i′ are integer grid indices; i denotes an arbitrary state; j denotes an arbitrary stage; i′ denotes
an arbitrary state at the next stage; ti,j represents the estimated arrival time at grid i, j; xi,j(ti,j) is aircraft
position; and ui,j(ti,j) is the decision variable defined in a set of admissible controls Ui,j .

In the DP formulation, the minimum cost-to-go function J(xi,j(ti,j)) at any state can be calculated
recursively by the following equation,

J(xi,j(ti,j)) = mini′ [D
i′,j+1,ti′,j+1
i,j,ti,j

+ Wi′,j+1,ti′,j+1
i,j,ti,j

+ Ci′,j+1,ti′,j+1
i,j,ti,j

+ J(xi′,j+1(ti′,j+1))], (2)

where Di′,j+1,ti′,j+1
i,j,ti,j

= ||ui,j(ti,j)||/dfuel is the estimated fuel cost associated with transitioning from xi,j(ti,j)

to xi′,j+1(ti′,j+1), and dfuel is a user specified conversion constant. The component Wi′,j+1,ti′,j+1
i,j,ti,j

is the cost
of deviation due to the convective weather taking the link from xi,j(ti,j) to xi′,j+1(ti′,j+1). It can equal a
user-specified constant cost Kdeviation, or it can be calculated based on the predicted deviation probability.
More details on finding this cost component will be given in Section III. The component Ci′,j+1,ti′,j+1

i,j,ti,j
is

the cost associated with crossing a congested region and is equal to the constant Kcongestion. Note that
this study focuses on minimizing fuel consumption and cost of deviation due to convective weather. Each
component of the cost can be included or excluded depending on the objective of the application or available
information. Additional cost components associated with other constraints can also be added, if necessary.
After finding the minimum cost-to-go function J(xi,j(ti,j)) at all states, the optimal flight path, which is the
sequence of optimal controls ui,j(ti,j), can be determined by minimizing the total traveling cost from the
origin to the destination.

II.B. Optimal Flight Path Searching

This section presents the procedures for finding the optimal flight path via dynamic programming algorithm.
The procedures are outlined first. Each individual step is then discussed in more detail. The procedures are
summarized as the following:

for each origin (or starting) and destination pair,
1. Define a set of grids xi,j for the search space.
for each tentative departure time (or re-routing time),

2. Calculate tmin
i,j and tmax

i,j for all ti,j which is the estimated aircraft arrival time at xi,j .
3. Define the set of admissible controls Ui,j .
for each stage (starting from the last stage),

for each admissible state and admissible link,
4. Calculate the following link costs:

• The estimated fuel cost Di′,j+1,ti′,j+1
i,j,ti,j

,

• The expected cost of deviation Wi′,j+1,ti′,j+1
i,j,ti,j

,

• The congestion cost Ci′,j+1,ti′,j+1
i,j,ti,j

,
5. Calculate the optimal cost-to-go J(xi,j(ti,j)).

end for
end for
6. Find the optimal path by minimizing the total cost over all stages.

end for
end for

1. The first step in searching for the optimal route is to apply a discretization scheme to the airspace
(which occupies a region involving the starting position x0(t0) and the destination position xf (tf ))
to obtain the discrete search space. In this study, the search space is defined by Cartesian grids.
The latitude and longitude of the starting and destination points are transformed into the Cartesian
coordinates. When the size of the search space and the dimension of the grids are specified, the total
number of admissible states and stages can be determined. The admissible states are evenly distributed
on a rectangular plane formed by the start-to-end vector, which points from the starting point to the
destination point, and the vector perpendicular to it. The number of states are set to be equal on
both sides of the start-to-end vector. The Cartesian coordinates of the states are calculated using the
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two directional vectors. In general, the position xi,j can be located by going along the normalized
start-to-end vector for j steps and going along the normalized perpendicular vector for i steps. For
illustration purpose, a sample grids for DP method is shown in Fig. 1 .

Figure 1. Sample of dynamic programming grids.

2. Once the grid has been created, the times of arrival ti,j at each state xi,j are estimated given the aircraft
speeds and the initial time t0. Please note that the initial time can be the tentative departure time
of an aircraft or the time that an aircraft is subject to tactical reroute. Each arrival time is assumed
to be within a time interval defined by tmin

i,j and tmax
i,j . Although tmin

i,j and tmax
i,j can be estimated by

finding the shortest path and longest path from x0 to xi,j , approximation of arrival time at each grid
is made to simplify the calculation. tmin

i,j is calculated by using great circle distance from x0 to xi,j and
the aircraft speed. tmax

i,j is assumed to be bigger than and proportional to tmin
i,j . It can be represented

by σ · tmin
i,j . For simplicity, the parameter σ is assumed to be constant in this study. Although it can

be time-varying and route-specified. Note that only the estimated arrival times vary, while the set of
the admissible positions remains unchanged, when the initial time is changed.

3. Having calculated the coordinates of the states and the corresponding estimated arrival times, the
next step is to define the set of admissible controls Ui,j . Here, a simple rule is adopted by assuming
that an aircraft can travel from the starting point to any state defined in the first stage. Similarly,
it can go directly from any state in the last stage to the destination. When an aircraft reaches the
boundary of the search space, it is only allowed to travel along the boundary (ximin,j to ximin,j+1 or
ximax,j to ximax,j+1) or fly towards the inside of the search space (ximin,j to ximin+1,j+1 or ximax,j to
ximax−1,j+1). When an aircraft is at any intermediate state, it can travel to the nearest three states at
the next stage (xi,j to xi,j+1 or xi,j to xi−1,j+1 or xi,j to xi+1,j+1). The computation time to solve a
DP problem is very high because of the cost-to-go function at all reachable states, which is determined
by the number of possible links between each state, must be computed to provide a globally optimal
solution. Therefore, allowing fewer links between each state and constructing a heuristic search space
that defines stages to guide the searching process toward the destination can reduce the computation
time.
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4. The fuel cost is proportional to the traveling distance and can be estimated using a user-specified
constant dfuel . The cost due to severe weather Wi′,j+1,ti′,j+1

i,j,ti,j
can be calculated using Eq.(4) (which

will be shown in Section III). The fuel cost can also be simply set to infinity if the link between
xi,j(ti,j) and xi′,j(ti′,j+1) is expected to encounter convective weather system(s) based on the weather
forecasts provided by any weather products. Similarly, the congestion cost at each grids Ci′,j+1,ti′,j+1

i,j,ti,j

can be determined by predicting and monitoring aircraft count in the en route sectors. Each grid can
be mapped to its corresponding sector if the flight altitude is known. Since the arrival time at each
grid is already estimated, the congestion cost can be obtained by checking the predicted demand of
the sector at the estimated arrival time interval. The congestion cost is set to infinity if the predicted
sector demand exceed the maximum threshold.

5. The optimal cost-to-go function at each admissible state is calculated backward by using Eq.(2).

6. The optimal flight path, which is the sequence of optimal controls ui,j(ti,j), is determined by minimizing
the total cost from the origin to the destination. Then, the flight plan is specified by a sequence of
latitude and longitude translated from the optimal controls.

The current shortest path problem can be solved by an O(e) computation, where e denotes the total number
of admissible links. Suppose there are M stages, N states at each stage and L links at each state from
first stage to M − 1 stage. At the last stage M , there are N cost computations and 0 comparisons since
aircraft can go directly from any state to the destination. At the origin, there are N cost computations and
N comparisons since aircraft can go directly from the origin to any state at the first stage. At each stage
from stage 1 to stage M − 1, there are N × L cost computations and N × L comparisons. It is clear that
the optimal path can be found in O(M ×N × L) = O(e) operations.

III. Flight Deviation Probability Using the Convective Weather Avoidance
Model

This section presents the formula for calculating the predicted probability of the deviation from a given
flight path due to convective weather. The formula uses the Convective Weather Avoidance Model (CWAM),
a quantitative model that integrates historical pilot decisions with Corridor Integrated Weather System
(CIWS) weather forecasts to predict when a pilot will deviate around convective weather systems. CIWS
and CWAM are developed by MIT Lincoln Laboratory. CIWS integrates data from national weather radars
with thunderstorm forecasting technology, and provides 0-2 hour convective weather forecasts. CIWS weather
depiction is composed of precipitation [Vertically Integrated Liquid (VIL)] and echo tops. CWAM calculates
the fields that identify regions of airspace that pilots are likely to avoid due to the presence of convective
weather. It uses CIWS vertically integrated liquid and echo top fields to predict aircraft deviations and
penetrations. Each CWAM field has a probability of pilot deviation associated with it.

A pilot may encounter multiple severe weather systems (multiple CWAM weather fields) in the en-route
airspace. It is necessary to consider the overall possibility of deviation from the given flight plan due to
multiple severe weather systems along the tentative flight trajectory. The formula uses all CWAM fields
along the flight trajectory to calculate the probability of deviation from the given flight path. The deviation
probability serves as a computable measure of reliability for a given route. For the purpose of optimal flight
path selection, the formula calculates the deviation probability for all path candidates. The flight path with
the best probability of deviation is selected as optimal. Furthermore, the formula is used to calculate the
expected weather cost used in Eq.(2) Section II.A.

In practice, there are several sources of uncertainty that can cause a flight to deviate from its original path.
This study only considers convective weather as the cause of flight deviation. Furthermore, it is assumed
that deviation will only occur at a particular set of time instants when weather forecasts are updated. The
following notations are used in the analysis:

t0: Starting time associated to the beginning of a path ,
tf : Stopping time associated to the ending of a path ,
Dtk : Event that deviation occurs from the path at time tk where t0 ≤ tk ≤ tf ,
D̄tk : Complement of Dtk ,
D[t0tf ]: Event that deviation occurs from the path between t0 and tf .
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For a given flight path, the position of an aircraft and estimated arrival time at the destination or any points
along the path can be estimated if the aircraft speed is known.

Assumption 1 The sets of event D̄tk are independent ∀tk.
The probability of deviation can be obtained under Assumption 1 by the following equations,

P (D[t0tf ]) = P (
⋃

tk

Dtk)

= 1− P (
⋂

tk

D̄tk)

= 1−
∏

tk

P (D̄tk)

= 1−
∏

tk

(1− P (Dtk)). (3)

Note that DeMorgan’s Law is used to obtain the second row of above equations. The physical implication of
Assumption 1 is that knowing the non-deviation from the original path at any time instant does not affect
the probability of non-deviation at any other instant. Nevertheless, the validity of Assumption 1 depends
on the probability measure being used. In fact, P (D[t0tf ]) can be computed without making Assumption 1
if the probability of non-deviation at one instant (relative to non-deviation at other instants) is known.
Unfortunately, this can drastically increase the complexity of the problem when the length of flight time
increases.

When the predicted aircraft position and the corresponding time are known, P (Dtk) can be obtained
from the output of CWAM. The probability P (Dtk) equals to zero if the aircraft does not incur any CWAM
weather field between tk and tk+1. If the aircraft incurs a CWAM weather field between tk and tk+1, the
probability P (Dtk) equals to the pilot deviation probability associate to the CWAM field. If the aircraft
incurs multiple CWAM weather fields between tk and tk+1, each CWAM field incursion is considered an
independent event. The deviation probability P (Dtk) = P (D[tktk+1]) is calculated by Eq.(3) using a smaller
time increment between tk and tk+1.

The above equation can be applied to calculate the expected deviation cost due to convective weather
used in the DP method in Section II. The expected deviation cost can be calculated by the following equation
assuming a user-specified constant deviation cost Kdeviation,

Wi′,j+1,ti′,j+1
i,j,ti,j

= E[Kdeviation]

= Kdeviation ∗ P (D[ti,jti′,j+1]). (4)

For simplicity, note that Wi′,j+1,ti′,j+1
i,j,ti,j

can equal a user-specified constant deviation cost (instead of cal-
culating the expected cost). When weather forecasts are not from CWAM, the weather cost component
Wi′,j+1,ti′,j+1

i,j,ti,j
can simply be set to infinity if the underlying link is predicted to intercept a severe weather

system.

IV. Experimental Setup

This section presents setup of the experiments which are conducted to evaluate performance of the DP
routing algorithm. Section IV.A discusses how to generate and investigate optimal DP routes under various
design parameters. Section IV.B provides background of optimal CDRs. It also describes the procedure of
selecting optimal CDRs from a set of pre-determined CDRs and compares them with optimal route calculated
from the DP routing algorithm.

IV.A. Variation of Design Parameters

The first part of this study generates and investigates optimal DP routes under various design parameters.
The optimal routes are generated using weather data from CIWS and processed data from CWAM since the
weather cost in the objective function in the DP method can be updated and calculated using either. The
study also investigates the effect of change in the following design parameters: (1) density of the search grid
used in the algorithm and (2) the uncertainty, σ, in the estimated time of arrival at the grid point i, j. The
study uses NASA’s Future ATM Concepts Evaluation Tool (FACET) to generate results.
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IV.B. DP Routes Vs. Optimal CDRs

The second part of the study compares and evaluates the optimal route calculated from the DP routing
algorithm and the optimal CDR selected from the set of pre-determined CDRs. FAA currently uses a
database of predefined Coded Departure Routes (CDRs) to reroute flights between airports around weather
or traffic constraints prior to departure. Determining the relevant and optimal CDRs manually for a given
weather forecast is a difficult and possibly time-consuming task. One reason is that optimal CDRs are
selected from pre-determined static CDRs therefore avoiding hazardous weather events often requires a flight
to significantly deviate from the shortest route. For example, see Fig. 2, which shows a set of CDRs defined
for flights from KORD to KEWR. It also shows three sets of grid for the search spaces from KORD to KEWR,
KIAD and KATL. Another reason is that CDRs are defined using Navaids that impose physical constraints
on the process. In the future, many aircraft will use Global Positioning System (GPS)-based equipment
to navigate. This will make it possible to determine optimal routes without the Navaid constraints. Thus,
an alternative approach to static CDRs is needed. This study is designed to address these concerns. It is
focused on dynamically generating optimal flight routes as alternatives to static CDRs, given the tentative
flight schedules and the most current weather forecasts.

Figure 2. The coded departure routes from Chicago O’Hare International Airport (KORD) to Newark Liberty Inter-
national Airport (KEWR) and three sets of optimal routing grid. Red grids show search space from KORD to KEWR.
Green grids show search space from KORD to Washington Dulles International Airport (KIAD), and blue grids show
search space from KORD to Jackson Atlanta International Airport (KATL).

The optimal CDR provides the shortest distance and satisfies the minimum predicted deviation proba-
bility. Note that the predicted probability of deviation for each flight is calculated using the estimated time
and position of an aircraft along the tentative flight trajectory and the forecasted convective weather events
from CWAM. The flight altitude is assumed to be constant and at 35, 000 feet. The observed deviation
probability of a flight is calculated from the CWAM weather contours that the simulated aircraft actually
encounter in the simulation.

The procedure of optimal CDR selection is the following. The CDRs between each monitoring airport are
pulled from the FACET database. For each origin and destination pair, the set of CDR is sorted according
to the distance of the route in ascending order. In the simulation, the predicted probability of deviation
for each CDR is computed using weather forecasts from CWAM after the departure time of the monitored
flight is obtained. The route with (1) the shortest distance and (2) a predicted probability of deviation that
is less than or equal to the user-specified minimum deviation probability is selected as the optimal CDR. In
the event that none of the CDRs satisfies the minimum predicted deviation probability, the minimum level
will be incremented by a user-specified level (currently 0.01) until at least a route satisfies the criteria.
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The optimal DP route for each flight is then calculated under the same conditions. The next section will
discuss the distances and the predicted and observed probabilities of deviation for two set of routes. Note
that all optimal routes are calculated for the flights by using the weather forecasts at departure. Some of the
flights will encounter convective weather in en route airspace due to uncertainties in the weather forecasts.
These flights are subject to en route rerouting or airborne holding. This study focuses on pre-departure
rerouting although the DP routing algorithm can be applied for en route rerouting. More details on en route
routing using convective weather avoidance model can be found in Windhorst7 and Love.8

Figure 3. CIWS precipitation data (yellow-red filled polygon) and corresponding CWAM (colored contour) output for
18:00 UTC on June 19, 2007.

V. Performance Evaluation

In this section, performance of the DP routing algorithm is evaluated. The evaluation consists of two
scenarios. Section V.A presents the evaluation results for the first experiment as discussed in Section IV.A.
Section V.B shows the results for the second experiment as discussed in Section IV.B.

V.A. Variation of Design Parameters

This experiment evaluates optimal DP routes under various design parameters. The DP routes are designed
with different choices of σ and grid spacing using weather forecasts from CIWS and CWAM, respectively.
The first scenario used for testing is the set of flights that fly between Chicago O’Hare International Airport
(KORD), John F Kennedy International Airport (KJFK), Newark Liberty International Airport (KEWR),
Washington Dulles International Airport (KIAD), Jackson Atlanta International Airport (KATL), Dallas
Fort Worth International Airport (KDFW) and Kansas City International Airport (KMCI). Here, only
flights that depart and land between 12:00 to 18:00 UTC on June 16, 2007 are considered. On this day, the
convective weather system consists of a squall line that extends by early morning from the U.S.-Canadian
border into Memphis Center. The line of storms moves throughout the day in an easterly direction and
impacts by mid-afternoon much of the eastern shoreline. The weather data are developed using actual and
forecasted CIWS and CWAM data as shown in Fig. 3. The CIWS weather depictions are displayed by
yellow-red filled polygons, which cover areas that have VIL ≥ 3. The CWAM fields are outlined in different
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colors, which correspond to different deviation probabilities as labeled on the color bar.
There are a total of 143 scheduled flights between these city pairs. The optimal DP routes are calculated

after the departure time. The size of the search grids is equal to 10 km, 20 km, 30 km, and σ is equal to
1.05, 1.1, and 1.2, respectively. There are nine different optimal routes between each city pair. The fuel
conversion constant dfuel is set to be 7 dollars/km. The weather cost is set to be 10 million if any link
intercepts CIWS forecasted weather contours that have VIL ≥ 3. Nine other optimal routes are solved using
CWAM weather data. The flight altitude is assumed to be constant at 35, 000 feet. The weather cost in the
objective cost function is calculated using Eq.(4) in Section III with deviation cost constant Kdeviation set to
be $40000 if any link intercepts CWAM weather fields that exceed 60 percent probability of deviation. Note
that the weather cost is at least one order magnitude larger than the fuel cost in the objective cost function
when a link intercepts a convective weather system (CIWS or CWAM) with a severity greater than the user
specified level. The first priority of the optimal routes is to avoid the convective weather.

Figure 4. Distance and predicted and observed deviation probability of the optimal routes calculated using weather
data from CIWS and CWAM.

The first row in Fig. 4 shows the distances of the optimal routes for the 143 flights calculated using
CWAM (blue solid line) and CIWS (green dashed line) data. The grid size is equal to 10 km and σ is equal
to 1.05. The predicted and observed probabilities of deviation are shown on the second and the third row,
respectively. The CWAM routes are shorter than CIWS routes on average. The predicted and observed
probabilities of deviation for CWAM and CIWS routes are well below 60% on average. Figure 5 shows the
distance of the optimal routes calculated using CWAM with different design parameters. The first, second,
and third columns show the distances with grid sizes equal to 10 km, 20 km, and 30 km, respectively. The
first, second, and third rows show the distances with σ equal to 1.05, 1.1, and 1.2, respectively. Figure 6
shows the distance of the optimal routes calculated using CIWS with different design parameters. In general,
increasing the density of the grids provides optimal routes with slightly shorter distance and increasing the
value of σ slightly increases distance of the optimal routes. The routes with 30 km grid spacing are about
6 − 7 nmi on average longer than the routes with 10 km grid spacing. However, a 10 km space between
grids requires almost 10 times more grid points (and links) than a 30 km grid spacing. In theory, that means
about 10 times more computational efforts are needed to save 6− 7 nmi or 1% distance since computational
complexity of the current DP algorithm is O(e). In practice, the total computational times for rerouting
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Figure 5. Distance of the optimal routes calculated using weather data from CWAM with different design parameters.

Figure 6. Distance of the optimal routes calculated using weather data from CIWS with different design parameters.
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143 flights with 10 km and 30 km grid spacing are about 23 minutes and 3 minutes, respectively. The
computational time is almost 8 times longer when 10 km grid spacing is used. By comparing Figure 5 and
Figure 6, the CWAM routes are 8.3 − 12.8 nmi on average shorter than the CIWS routes. Note that the
complexity of the current routing algorithm does not change when choosing between CWAM and CIWS. It
is clear that shorter routes can be obtained by using CWAM without increasing computational effort.

V.B. DP Routes Vs. Optimal CDRs

Figure 7. Distance, predicted and observed deviation probability of the optimal routes from dynamic programming
algorithm and CDRs

The second scenario used for testing is the set of flights that depart and land between 12:00 to 18:00
UTC on June 16, 2007 and fly between KORD, KEWR, KATL, and KIAD. Only CWAM weather data is
used for this case. The CDRs between these four airports are pulled from the FACET database. For each
origin and destination pair, the optimal CDR is selected following the procedures described in Section IV.B
from the set of the CDRs. The optimal DP route is calculated with search grid spacing equal to 15 km along
the origin to destination direction and 30 km in the perpendicular direction. The σ is chosen to be 1.2.
The optimal DP route is calculated to avoid CWAM weather contours that exceed 60 percent probability of
deviation with a safety margin. The safety margin in the DP design prevents aircraft from flying too close
to convective weather. It is also an attempt to cope with uncertainty in the weather forecasts. Note that
safety margin is not included in selecting optimal CDRs since all CDRs are predefined. The probability of
deviation for DP routes and optimal CDRs are calculated without adding a safety margin to CWAM weather
fields.

The first row of Fig. 7 shows the distance of the DP (blue solid line) and optimal CDR (green dashed
line) routes. The predicted and observed probabilities of deviation are shown on the second and the third
row, respectively. The difference between the two sets of data is plotted in Fig. 8. The average distance
of the DP routes is shorter than the average distance of the optimal CDRs. It is observed that the DP
optimal route is not always shorter than the optimal CDR. This is because a safety buffer is added to
the CWAM weather contours when solving the DP algorithm while optimal CDR is selected based on the
predicted probability of deviation calculated using CWAM weather fields without adding a safety margin.
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Figure 8. Difference in distance, predicted and observed deviation probability between the optimal routes from dynamic
programming algorithm and CDRs

It is shown that optimal DP routes are about 20 nmi on average shorter than optimal CDRs. Sometimes,
the predicted probabilities of deviation are larger than 0.6 for both optimal DP routes and optimal CDRs.
This situation occurs when the en-route airspace is almost completely blocked by the convective weather.
The mean deviation probabilities of DP routes are slightly higher than those of optimal CDRs, but both
are below 0.5. This is caused by the definition of the deviation probability itself. Currently, the predicted
and observed deviation probability is calculated by considering CWAM weather fields with a probability
of deviation greater than zero while the DP optimal routes are solved to avoid CWAM weather fields with
probability of deviation greater than 0.6. In the future, the calculation of the probability of deviation will
be modified to consider different pre-defined hypotheses.

VI. Conclusion

This study develops a linear time algorithm for searching optimal flight path. It is based on dynamic
programming and utilizes convective weather avoidance model. The optimal routes are solved by minimizing
cost of fuel and expected cost of route deviation. They are considered as alternatives to the CDRs. A
formula, which calculates predicted probability of deviation from a given flight path, is also derived. The
predicted probability of deviation serves as a computable measure of reliability for the purpose of optimal
route selection. The DP routes are generated by varying various design parameters, and their performances
are investigated. The optimal routes that are generated using CWAM are shorter than the routes generated
using CIWS data on average. This study also compares and evaluates the DP routes, and the optimal CDRs
selected from the set of pre-determined CDRs. The optimal DP routes are about 3 percent on average
shorter than the optimal CDRs.
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