

American Institute of Aeronautics and Astronautics

1

A Data-Centric Air Traffic Management Decision Support
Tool Model

James R. Murphy* and Ron Reisman†
NASA Ames Research Center, Moffett Field, CA 94035-1000

and

Rob Savoye ‡
Seneca Software, Rollinsville, CO 80474

 This paper describes the differences between a data-centered and an algorithmic design
model as it applies to air traffic management software. An example of converting an existing
algorithmic software baseline to a data-centric model is discussed. Using the data-centric
model, a proof of concept flight deviation tool was developed. The deviation tool received
inputs from a real-time data manager and a third party database to supply a list of aircraft
identified as off their assigned flight path. The results were displayed using a standard web
browser. From the development of this prototype it was determined that the use of a
database should be coupled with a data manager to ensure a timely interaction with the
data.

I. Introduction
HE Center – Terminal Radar Approach Control (TRACON) Automation System (CTAS) is a suite of programs
designed to improve the efficiency of the National Airspace System (NAS) while maintaining or exceeding the

current level of safe air traffic operations.1-4 CTAS based tools, such as the Traffic Management Advisor, are
among a group of tools included in the Federal Aviation Administration’s (FAA) plan for modernization.5 It is
recognized that modernization of the air traffic infrastructure will come from integration of existing and future
support tools and data.6-7 One aspect of the next generation air traffic control system is the collection and
dissemination of aircraft flight information from these tools via the Flight Object.8 It has been seen through the
development of CTAS tools such as the Collaborative Arrival Program that connecting to and transferring data out
of CTAS can be difficult.9 CTAS tools have been developed over many years starting with a foundation of a 4-
dimensional (4-D) trajectory modeler and adding functionalities such as scheduling, speed advisories, and conflict
detection.2-3 Whether the reason was development time constraints or the need to get the best performance possible
from the existing hardware, new CTAS functionalities were typically inserted into the software at the place where
the data were accessible, or in some cases, through the addition of new modules with a customized interface to
existing data. Each addition caused the underlying software to have a greater interdependence. 2,10 It is this
interdependence that complicates sharing of CTAS derived data with outside systems and integration of new
functionalities into the existing baseline.
 Software design and development is a balancing act among ease of maintenance, scalability, and efficiency. In
the near real-time necessities of air traffic control software, efficiency has always been a major concern. However,
due to continued advancements in hardware, designing software that is more easily managed can now be the focus.
In the data-centric software model, the algorithm is not the primary driver for the design of the software. Instead the
data inputs and derived outputs from the algorithmic software modules are stored in a central database for use by
any system that can connect to it. This provides several benefits. First, new functions can be added to the system
without impacting any of the existing software algorithms. The only thing that is needed is knowledge of the data
and a connection to the database. At the same time, the database provides an interface between derived data, such as

* Software Engineer, AFD, MS 210-8, AIAA Member.
† Research Engineer, AFD, MS 210-8, AIAA Member.
‡ Software Engineer.

T

6th AIAA Aviation Technology, Integration and Operations Conference (ATIO)
25 - 27 September 2006, Wichita, Kansas

AIAA 2006-7830

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

American Institute of Aeronautics and Astronautics

2

schedules, and the outside world. In addition, since all of the data are stored in the same place, checks can be added
to ensure that any set of derived data is consistent with respect to each other.
 This paper provides a description of a data-centric software model for use in the air traffic management (ATM)
domain and discusses the transition of the CTAS software from an algorithmic design model to a data-centric model.
A proof of concept tool development where CTAS algorithms were used to provide derived data to an ATM
database is described. Lessons learned from the database development will also be discussed, including data display
techniques that proved to be problematic.

II. Motivation
The replacement to the Host Computer System, which is an air traffic controller’s main source of aircraft track

and flight information, is currently under development by the FAA.11 In parallel, ATM decision support tools are
under research and development to augment the Host replacement’s capabilities by providing controllers with tools
to increase efficiency of air travel while maintaining or increasing safety.7,12 The FAA’s System-Wide Information
Management project is an attempt to bring value added functionality to the decision support tools by sharing
information.13 As new decision support tools are developed, several questions are commonly raised:

1.) How does an outside program access data from CTAS?
2.) Where are the data needed for a particular CTAS algorithm stored?
3.) Does all of CTAS need to be run to get the data?

Though thoroughly familiar with the CTAS software and algorithmic baseline, these are the same questions asked
by the authors when presented with the following task: Show aircraft that are deviating from their flight plans on a
simple display.
 Much of the necessary code to complete this task already existed, embedded in various CTAS modules.
However, while developing the proof-of-concept prototype, it was realized that using the existing CTAS baseline
also brought in software algorithms that were not necessary for this task, such as generating estimated times at the
meter fix. In this case, the capability of CTAS to build functionality from existing software became a liability for a
relatively simple, well-defined problem. So instead of using the existing CTAS software baseline, only the
algorithms needed to develop a module whose purpose was to determine whether an aircraft was deviating from its
flight path were taken from CTAS. This led to reevaluating the design of all CTAS tools to orient them around data
storage instead of data generation. This is a basic concept of object-orient programming, which has demonstrated
extended re-use of software and algorithms.14

III. The Current CTAS Design
To illustrate the benefits of using a data-centric software design, let us first examine the current CTAS software

design model. For clarity, the basic flow of information through a CTAS system designed to schedule aircraft at the
meter fix of an adapted airport will be described. For a
more in-depth discussion of CTAS processes, refer to
Erzberger, et al.2

 One way to think of the CTAS design is as a hub
and spoke algorithmic data server. Each of the core
algorithms necessary for CTAS output are contained in
separate processes that communicate to each other
through the hub. Refer to Figure 1 for a schematic
representation of the software hub and the spoke
processes. It should be noted that the CTAS design
allows each of the spoke processes to be run on a
separate machine that connects to the hub though a
network socket. This allows computation intensive
processes to be run on separate machines, which enables
users to scale the software to the level needed by a
particular application.

As the hub, the Communications Manager primarily
acts as a router of data that are calculated by one process,
but needed by other processes. Aircraft track and flight
plan information from the Host are received via radar
parsing processes and passed to each of the spoke

Figure 1. Current CTAS design. Schematic of the
CTAS processes used to provide scheduled times to the
meter fix.

American Institute of Aeronautics and Astronautics

3

processes, as needed. The Communications Manager also stores various state information, such as active runways
and aircraft flow restrictions; so that when a spoke process connects, it will have a snapshot of the current state of
the system.

One of the spoke processes that receive data from the Communications Manager is the Time Predictor. This
process is divided into two primary sub-tasks. The Route Generator first parses the flight plan data into a list of
fixes that define the aircraft’s horizontal path, then determines the vertical restrictions the aircraft must maintain
based on intent information from the flight plan and the adaptation of air traffic control procedures. The Trajectory
Generator utilizes the horizontal and vertical profiles, along with atmospheric and wind data, to calculate a 4-D
trajectory. Finally, estimated times to various points along the projected path, including the assigned meter fix and
expected runway, are determined through integrating the trajectory segments.2

These estimated times are sent to the Scheduler via the Communications Manager.15 After receiving the
estimated times, the Scheduler divides aircraft that are assigned to the same meter fix and have similar altitude
restrictions into groups. Aircraft in the same group are then assigned times at the meter fix to assure temporal and
spatial separation. These scheduled times provide controllers with an efficient flow of aircraft into the adapted
airspace.15

The visualization processes receive information from the Time Predictor and Scheduler processes and display
the data to air traffic personnel. Timelines, depicting each aircraft’s estimated and scheduled times to the meter fix
or runway, are displayed in the Traffic Management Unit. CTAS also provides an air traffic situational display that
gives an external representation of the current track data for each aircraft and displays various types of air traffic
control maps.

As new algorithms are developed, the CTAS tool-set can be expanded to provide further value-added outputs to
controllers. Figure 2 shows the expansion of the base scheduling functionality in CTAS to provide trajectories for
aircraft to achieve the scheduled times at the meter fix. The Schedule Analyzer, shown outside the core scheduling
area, also connects to the CTAS system via the Communications Manager. It receives track, flight plan, and
scheduling data for each aircraft and then iteratively generates trajectories for the aircraft that are checked for both
successfully meeting the schedule time at the meter fix and conflicts among all other arrival aircraft trajectories.3

At the start of the iteration process, the Schedule
Analyzer generates a set of trajectories that provide a range
of times that the aircraft can be expected to reach the meter
fix. This starting set of trajectories is identical to the set
calculated by the Time Predictor used to generate the
original estimated times at the meter fix. It would be
possible to have the Time Predictor module send its
trajectories to the Schedule Analyzer, however at the time
the schedule manager was developed, the network
bandwidth needed to send the original trajectories from the
predictor module imposed problems. Re-generating the
trajectories in the Schedule Analyzer, though on the surface
seeming like a duplication of effort, only negligibly impacts
the rest of the CTAS system because the Schedule Analyzer
is able to run on a separate machine.

IV. Proposed Data-Centric Design
Hardware and software techniques have advanced to a

state where some of the limitations that drove the current
CTAS design are no longer as much of a concern. In fact,
the original CTAS scheduling functionality that was running
operationally using several machines can now be run on a
single machine. However, as more spoke processes are
moved to the same machine, duplication of any data
calculation can directly impact the performance of the
system as a whole. With that in mind, it should be noted that
even though using a data-centric approach to software
development can remove the duplication of some of the
calculations such as trajectory generation, it does not

Figure 2. CTAS Expansion. Diagram of the CTAS
processes used to extend the core scheduling
functionality to also provide a trajectory to meet the
schedule times.

American Institute of Aeronautics and Astronautics

4

guarantee more efficient software. In fact, it is possible
that a tightly coupled interdependent system such as CTAS
can perform more efficiently. However, with the
advancements in memory, computer performance, and
network bandwidth, a small loss of software efficiency is a
fair trade for ease of programming, extensibility, and
maintainability of the software.

A. Data-centric Model
Figure 3 illustrates the basic design of the data flow in a

data-centric tool-set model. A data manager at the center
stores all of the information generated by each of the raw
data feeds and sub-processes. These sub-processes are
referred to as agents, which can be thought of as building
blocks for any given program. Agents are the smallest
subdivision of source code necessary to derive output data.
Their complexity can range from a simple function to a full
program, depending on the requirements. Furthermore,
agents are only concerned with the data they need to
generate a particular answer. That answer is sent back to
the data manager without regard to who needs it, thus
reducing the complexity of the agent’s software.

The Data Manager in the model is really comprised of
two components, a data cache and an archive. The data
storage is separated this way to account for the two main

functions of the manager, access to all of the necessary pertinent data used by the agents, and archiving of all data
for post processing or expanded meta-analysis. The cache is essentially real-time memory, containing data that are
used often by the agents, or needed by agents as quickly as possible. The archive can be considered a standard
database, with the data stored on a disk, accessed through query commands. These databases have powerful tools to
query and access the information, but since it may not reside in memory, the data can be slow to retrieve, especially
with complex queries.

The Data Manager provides basic publish and subscribe functionality to all attached agents. When an agent
connects to the Data Manager, it indicates what kind of information it needs to access. As the Data Manager
receives that type of data from raw inputs or other agents, it is forwarded to the requesting agent. This allows for
agents to build on the output of other agents, essentially creating a program from a group of agents.

In its role of managing the agents, the Data Manager is crucial for data consistency. It is possible that the data
required by an agent will come from multiple sources. It is the Data Manager that has the responsibility to ensure
that data from each source are consistent with each other before sending it on to the requesting agent.

There are two aspects of data consistency that make its assurance non-trivial. First, the latest data are not always
the data that are required. For example if an agent requires track and trajectory information to perform conflict
prediction, the track data that are provided to the agent must correspond to the trajectory data that are sent over.
Hence, it may not be sufficient for the Data Manager to send off the track data as they come in from the raw data
source. Instead it must wait until a complete set of data, i.e., the track and corresponding trajectory, are obtained
before sending it out. Coupled with that issue is the need for the Data Manager to keep track of dependency issues
among all data elements. The Data Manager must know that the trajectory is dependent on track, flight plan, wind,
etc. If any of these are updated or changed, the Data Manager must be able to either invalidate the existing
trajectory so that it is not used with inconsistent data or store the data that were used to generate it. How the Data
Manager handles these issues is dependent on the requirements of the system, but in the end it must keep a
consistent snapshot of required data for each agent.

The Data Manager also serves as the main connection to the archive. This allows for programs to connect to the
data cache, but still access archived information easily. In fact, an agent needs only make a request for data from the
Data Manager. If those data have been archived, the manager can query the archive automatically. This is hidden
from agents of the system. As the data age, a snapshot of the archive can be taken and the database purged. These
snapshots can be useful for post-run analyses, because they can be kept for an indefinite period of time and are a
complete record of the information that was in the Data Manager. It should be noted that using a data manager does
not preclude an agent, or any program, from accessing the archive directly. The archive is essentially a standard

Figure 3. Data-centric Design. Schematic of the
basic data-centric software model.

American Institute of Aeronautics and Astronautics

5

database and can be accessed through direct queries from any program. However, when controlled by a data
manager, access can be handled so that the archive is not overwhelmed with queries that have the potential to slow it
down dramatically.

The real power of this model is the flexibility it affords to the developer for the creation of the agents. Since the
agents are stand-alone modules that only interface with the Data Manager, they can be written in any programming
language that can connect to it. The agents can also be as complex as dictated by the requirements of the system.
So whether due to reasons of data consistency or software efficiency, an agent can be written with multiple complex
functionalities. In addition, a documented mechanism and infrastructure now exists to then break apart the complex
agent when development resources become available. This promotes software designed by asking what data are
needed, instead of how can the necessary data be generated or retrieved.

Using a data-centric model during program development provides the ability to use a simplistic agent as a stub,
while a more detailed agent is developed. As long as the interface to the Data Manager stays the same, the detailed
agent can be seamlessly swapped into the system upon completion. This allows for easier concurrent development
among separate programming teams.

B. Data-centric CTAS example
Consider again the case of the basic CTAS scheduling

functionality described above but this time through the
data-centric model. Figure 4 illustrates how the CTAS
algorithms can be incorporated into this model. The
aircraft track and flight plan data still come into the
system, but they are now stored into the Data Manager’s
cache and archive. The Data Manager determines which
attached agents require the track and flight plan data and
forwards this information appropriately. The example
could stop there; the Data Manager could be a simple
replacement for the original CTAS Communications
Manager and each of the agents, though complex, could
be the original Time Predictor, Scheduler, and displays.
This is where the most significant changes can be made.

Consider a functionality that takes the flight plan route
and returns the list of fixes that define the horizontal path.
This functionality could be taken out of the Time
Predictor module of the current CTAS implementation
and moved into a route-parsing agent. Likewise the
trajectory generator functionality can become a separate
agent. The Time Predictor now becomes an agent that
subscribes to the Data Manager for trajectories. As the
Data Manager receives new trajectories, they are
forwarded to the time predictor, which then calculates the
time at the meter fix. The new scheduling agent connects
to the Data Manager and periodically sends a request to
receive the latest snapshot of estimated times at the meter fix for each aircraft to generate the schedule. The timeline
and situational display agents at this point remain for the most part unchanged. They connect to the Data Manager
and subscribe to the necessary track, flight plan, time estimates, and schedule data.

Adding a new functionality like generating a trajectory to meet a scheduled time has now been simplified. A
new re-scheduling agent can take the output from the route parsing, time predictor, and scheduler agents and
generate advisories for the aircraft to meet the scheduled time. This trial meet-time trajectory can either be
generated by the trajectory agent or generated internally by the re-scheduling agent, depending on the requirements
of the system. In addition, regardless of the decision made at the time the agent is developed, with the data-centric
design model infrastructure in place, it can be changed in the future.

One of the major benefits of the data-centric model is that it allows for easier access to CTAS-specific data by
non-CTAS programs. Agents generating output data such as estimated and scheduled times do not need to know
how those data are used; only the manager has the data requirement knowledge of the agents. This removes implicit
dependencies among the agents. For example, estimated and scheduled times at the meter fix, trajectories, and even
conflict predictions are now accessible by any program that can readily connect to the Data Manager (or query the

Figure 4. Data-centric CTAS design. Schematic of
the CTAS system using a data centered design model.

American Institute of Aeronautics and Astronautics

6

data archive directly). This promotes the ability for CTAS systems to inter-operate with existing and future ATM
decision support tools.

V. Proof of Concept
The purpose of the proof of concept was to create a national display of the CTAS flight path deviation algorithm

for aviation security. This algorithm determines when an aircraft is off its assigned flight plan and flags this
condition on the CTAS situational display. It also has a prediction component that checks trajectories for
intersections with special use airspaces such as military operation areas.

The current flight path deviation algorithm is embedded within the conflict prediction functionality of CTAS. To
create a national display using the current CTAS software baseline, twenty instances of CTAS would need to be run
to cover the NAS airspace, one for each en-route Center. Even though a functional prototype of the twenty-Center
CTAS system has been demonstrated, since each instance of CTAS must run on at least one computer, the hardware
needs alone became prohibitive.16 In addition, it was still necessary to develop a national display that could show
deviating aircraft from each separate CTAS system, as well as a mechanism to get the deviation information out of
CTAS.

With this in mind, it was decided to develop a new program based on the deviation functional components from
CTAS. The intention was to build a system that would utilize the Enhanced Traffic Management System (ETMS)
Aircraft Situational Display for Industry (ASDI) national data feed and output the desired deviation predictions
while running on a single machine. The data would be accessed through a database, with the display provided via
web browser. By keeping the system simple, software development requirements would be manageable in the time
frame allotted. Through designing this software and building the prototype, the model for data-centric ATM
software was conceived.

A. Proof of Concept: Design
Figure 5 illustrates the basic process connectivity of the Deviation Web Utility. An open source database

(MySQL), which is readily available for our primary development platforms, is used for data archiving. The
database daemon serves as the data cache for the test-bed. Upon startup, MySQL loads the national waypoint and
sector boundary adaptation data. When the daemon
connects to MySQL, it downloads the necessary
adaptation from it. It also connects to the live ASDI data
feed, parses and formats the aircraft and track messages,
and stores the messages in MySQL.

The flight path deviation code was taken out of the
CTAS conflict prediction module, along with any
necessary support functions from the CTAS libraries.
These functions were used to create the deviation agent.
Only the portion of the flight path deviation code that
checks for flight path deviations was used.

The deviation agent connects to the database daemon
and waits for track and flight plan information. The
deviation agent was designed to be memory-less, so that
each time a track message is received by the database
daemon, it queries MySQL for the flight plan data for that
aircraft. It then sends a request to the deviation agent
with all of the data necessary for it to determine a
deviation. The deviation agent simply returns whether or
not a deviation was flagged for that aircraft (and the
reason if positive).

The display of the deviation list is handled by direct
access to MySQL through web based query scripts.
These scripts are used due to their relative ease of
accessing MySQL and capability for drawing simple
interactive displays on a standard web browser. By
selecting the appropriate internal web page in the
browser, a script performs a query into the database and

Figure 5. Deviation Web Utility. Schematic of the
proof of concept flight deviation prototype.

American Institute of Aeronautics and Astronautics

7

produces a list of deviating aircraft. Figure 6 shows
an example of an interactive deviation list. Each
deviation contains the aircraft call sign, the reason
the aircraft as flagged as a deviation, the controlling
Center, and the timestamp of the track message that
produced the listing.

The MySQL query is automatically repeated
every twelve seconds to keep the deviation list and
web page up to date. Notice that the call sign from
Figure 6 is selectable on the web browser. By
selecting an aircraft from the list, the web browser
will bring up a web page that displays two pictures.
As seen in Figure 7, the picture on the left shows the
complete flight plan path for the aircraft, including
all previous tracks, as well as the air traffic control
sectors the aircraft has flown through. The picture
on the right shows a zoomed-in view, with the flight
plan and the last twenty track hits. Note that the last
track segment was colored red to help indicate the
position of the aircraft in deviation.

The rudimentary aspect of the proof of concept displays seen in Figures 6 and 7 come from the selection of
display hardware. For the demonstration, the web browser was run on a wireless hand-held Personal Data Assistant
(PDA), which provided a 3.5” display screen.

B. Proof of Concept: Lessons Learned
The proof of concept design was not a result

of, but a precursor to, the data-centric model
described in this paper. From the development of
the Deviation Web Utility and the lessons learned
from the prototype, the concept of the data-centric
model was formed. The discussion of the lessons
learned from the proof of concept should be
prefaced by noting that the development time
frame for the prototype was approximately three
weeks and the researchers, though proficient in
ATM decision support tool development, were
novices in website programming. It should also
be noted that early in the proof of concept
development stage, Host flight and track
information was used to augment the existing
ASDI data. Though not part of the end prototype,
much insight from this merging exercise was
gained.

The creation of the database daemon and
deviation agent to utilize a database uncovered
many areas of concern when developing a data-
centric software system, most notably:

1. Modular Code Reuse
 Based on the SLOCCount source lines of code
counting program, had the CTAS software been
taken as is and the hooks to retrieve the
appropriate deviation data added, our system
would have been over 300,000 lines of code. For
the prototype, the total count of the deviation
agent source code was less the 4000 lines. For the

Figure 7. Deviation Display. Display of the flight plan and
track history of a deviation flight. The drawing on the left
represents the full flight plan and track history. The drawing
on the right shows the same flight zoomed into the last 20
track hits.

Figure 6. Deviation list. Actual snapshot of the web page
that displayed a list of deviating aircraft.

American Institute of Aeronautics and Astronautics

8

most part, the core functions that comprise the deviation algorithm were stripped from CTAS. However, several
supporting CTAS library functions were also taken. It was the intention to link the prototype software with the
existing CTAS libraries, but due to the libraries interdependencies, it was easier to pull out the code. Due to this
exercise, work to make the CTAS libraries less interdependent and more able to be used outside the core CTAS
processes has begun.

2. MySQL Database Access

It was found that if too many queries were sent to MySQL in a short period of a time, the system would slow
down considerably. Since the ASDI feed contains track messages for aircraft on a one-minute update rate, this was
not an immediate concern. However when twelve-second Host data were sent to MySQL, the insertions into the
database were not timely enough. Using a data daemon to bundle the track messages together for a single large
insertion into MySQL helped alleviate the access slow down.

Database access was also an issue when it came to retrieving data for display. For a system running with two
hours worth of data, the query for the list of deviating flights took 3-4 seconds, while the accessing the information
for a particular deviating flight took 3-6 seconds. This is not practical for a near real-time ATM display. Though
not implemented in the prototype, use of the database daemon to store the current list of deviating aircraft and
information on each of these aircraft would alleviate this problem. To display this information, the daemon would
then need to be queried instead of the MySQL database, but this step would be necessary for timely interaction. If
fact, the use of a data cache and subsequently the addition of it into the data-centric model were due, in part, to the
MySQL access problem.

3. Disparate data storage

Flight plan information from Host and ASDI data can come from multiple flight plan and flight information
message types. Hence, the latest flight plan amendment may contain an updated flight path, but not the filed
airspeed, etc. However, when the flight information is needed, the complete set of the latest information, regardless
of its source, is usually required. Either the code that inserts the flight data into MySQL needs to merge all relevant
flight plan information before insertion, or the code that queries the aircraft flight plan information needs to be able
to synthesize the relevant fields from each of the latest flight plan message types into a complete superset of
information. It is possible to let MySQL merge the relevant data fields from the latest of each of the flight plan
message types. This is known as a join. However it was our experience that MySQL joins can take a significant
amount of time, and it is better to keep the queries as simple as possible. So if real-time access to data is a
requirement, a process to manage data outside of MySQL is likely to be necessary.

It should also be considered that the database could be used as a record of each of the messages that came into
the system. If feasible, it may be advantageous to archive both sets of information, the raw message as it came in,
and a synthesized data message that contains the latest information for that aircraft. This would provide the
capability of using the same MySQL archive to post-process the data, as well as playing back the scenario.

4. Unique Aircraft Queries

A major problem with the prototype was the identification of unique aircraft. When a track or flight plan update
message came into the system, it needed to be identified with the appropriate flight segment, defined as a take off
and landing, for that aircraft. As mentioned above, complicated queries slow down MySQL, as well as make it more
difficult to interpret the returns from it. To increase the speed of the queries for a particular aircraft, it was found
that a unique aircraft identifier would be necessary.

The key is to use information from the aircraft that does not normally change during a flight segment. In the
current version of CTAS the call sign, departure airport, and to a limited extent the Host computer id are used.
However, the archive should be designed to handle a national traffic data source, so the Host computer id would
change as the aircraft flies from Center to Center. In addition, call signs can change for various reasons and airlines
routinely use the same call sign for particular flight segments every day. This presents a problem both in real-time
and archival MySQL access. As done with the ETMS, it is recommended that each flight segment be assigned a
unique number the first time an aircraft message is received by the system for that aircraft. For each additional
aircraft message received by the data manager, the aircraft can be matched to the appropriate flight plan message
already received for that aircraft. Depending on the incoming message and data source, the information used to
identify the matching flight segment flight plan can be one or more of the following:

1) Call sign
2) Source computer id
3) Source name

American Institute of Aeronautics and Astronautics

9

4) Departure airport
5) Arrival airport
6) Beacon code
7) Time and date of flight
8) Aircraft active flag.

The data manager will need to store enough information from each of the previous flight segments seen in the
system to either find the appropriate flight segment to the incoming message or assign a new unique id number.

It is estimated that 40,000 unique flight segments are assigned each day in the ETMS.16 The design of the
system called for the cache to stop writing to the active MySQL archive and start a new one each day. The cache
would then seed the new MySQL archive with information on all aircraft that have not yet landed. The number of
unique id values would need to be large enough to at least cover this transfer between archives. This would give us
the ability to track aircraft flights between multiple archives.

5. Use of Web Browser

A main focus of the prototype demonstration was the use of a web browser to access the deviation data. The
scope of the proof of concept prohibited a long development period for the display and the use of a web server
allowed for rapid prototyping. This also supported the ability to run the demonstration on the wireless PDA.
However, the web browser itself was a problem.

The purpose of our display was to present a list of deviating aircraft and allow a user to see plots of the flight
plan and track history for that aircraft. A typical web browser has many features that can either take the focus away
from the deviation utility, or go to a different site completely. Web browsers also have a built in caching of data that
needs to be controlled. In addition, the implementation outlined above displayed only images of the track and flight
plan information, with no zooming or panning interaction capability. While it is possible to create a web utility that
is more interactive, it appears that it would be more appropriate to invest in the development of a thin display client
that would interface with the Data Manager and display the appropriate data, with sufficient ability to zoom, pan,
and interact with the data. This would also provide the developers with the ability to completely control the display
environment.

VI. Conclusions
The data-centric design model shifts the question from how a particular problem is solved to what information is

needed to solve that problem. Implicit in this statement is that the algorithm will still need to be developed, but
focusing on the data allows for compartmentalization of the solution. Storing derived data in a centralized database
or manager allows for small isolated parts of the overall algorithm to be developed separately, as needed, without
impact to the rest of the system. This increases the re-use of separate modules and decreases the maintenance of the
finished system.

Another benefit is that over time, individual modules, such as route parsing or trajectory modeling can be re-
engineered and replaced as new technology is developed. This is possible due to the focus on the data itself and not
the algorithm. As long as the interface to the data stays the same (or only changes slightly), the impact of an
algorithm change would be lessened.

In a data-centric model the management of the data is of primary importance. Well-defined access to the data is
necessary for the algorithms to perform properly. A system that revolves around the data will need to ensure the
quality of that data. One aspect of this is the dual nature of the data access, real-time data and archival data. Access
to the data needs to be well defined so that requests for an aircraft’s flight plan can be uniquely identified between
yesterday’s, today’s, and tomorrow’s flight of the same name.

As seen from the flight deviation proof of concept, web-based access to the data can be problematic. It should
be stated however that this was one implementation. There are many examples in industry where web-based access
to data can be managed in such a way as to provide near real-time access to the information. Those should be
explored, but were out of scope for the proof of concept as developed.

Built into the data-centric model is the use of a database, such as MySQL. Though a data manager is
recommended when using the database for real-time processing, the ability to store daily (or even hourly) snapshots
of all of the data allows for the development of powerful analysis capabilities. Processes will no longer need to
output specialized analysis files; all data will be archived on a daily basis and can be stored for as long as needed.

Acknowledgments
The authors would like to thank David A. Wheeler for the use of SLOCCount source code counting program.

American Institute of Aeronautics and Astronautics

10

References
1 Erzberger, H., and Nedell, W., “Design of Automated System for Management of Arrival Traffic,” NASA, TM 102201,

Ames Research Center, June 1989.
2 Erzberger, H., Davis, T. J., and Green, S., “Design of Center-TRACON Automation System,” AGARD Meeting on

Machine Intelligence in Air Traffic Management, Berlin, Germany, May 11-14, 1993.
3 Green, S. M., Vivona, R. A., “En Route Descent Advisor Concept for Arrival Metering,” AIAA 2001-4114, Guidance,

Navigation, and Control, Montreal, Canada, August 2001.
4 Davis, T.J., K.J. Krzeczowski, and C. Bergh, “The Final Approach Spacing Tool,” IFAC Thirteenth Symposium on

Automatic Control in Aerospace, Palo Alto, CA, September, 1994.
5 “Blueprint for NAS Modernization (2002 Update),” FAA, Oct. 2002.
6 Dillingham, G. L., “Air traffic control: role of FAA’s modernization program in reducing delays and congestion,” General

Accounting Office, GAO-01-725T, May 2001.
7 “Next Generation Air Transportation System: Integrated Plan,” Department of Transportation, Joint Planning and

Development Office, December 2004.
8 Viets, K. J., Taber, N. J., “An Overview of a Flight Object Concept for the National Airspace System (NAS),” The MITRE

Corporation, McLean, VA, MTR 00W0000085, Sept. 2000.
9 Quinn, C., Zelenka, R. E., “ATC / Air Carrier Collaborative Arrival Planning,” 2nd USA/Europe Air Traffic Management

R&D Seminar, Orlando, Florida, December 1998.
10 Laudeman, I. V., C. L. Brasil, and P. Stassart, “An Evaluation and Redesign of the Conflict Prediction and Trial Planning

Planview Graphical User Interface,” NASA TM-1998-112227, April 1998.
11 Mead, K. M., “Next Steps for the Air Traffic Organization,” Department of Transportation, CC-2005-022, April 2005.
12 Post, J., Knorr, D., “Free Flight Program Update,” 5th USA/Europe Air Traffic Management R&D Seminar, Budapest,

Hungary, June 2003.
13 “Operational Evolution Plan Version 8,” FAA, May 2006.
14 Rentsch, T., “Object oriented programming,” ACM SIGPLAN Notices, v.17 n.9, p.51-57, September 1982.
15 Swenson, H. N., Hoang, T., Engelland, S., Vincent, D., Sanders, T., Sanford, B., and Heere, K., “Design and Operational

Evaluation of the Traffic Management Advisor at the Fort Worth Air Route Traffic Control Center,” 1st USA/Europe Air Traffic
Management R&D Seminar, Saclay, France, June 1997.

16 Clayton, J., Murphy, J., “Traffic Flow Automation System (TFAS) Analysis Report,” NASA AATT RTO 57 final report.

